Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,7 @@ from bird_species import bird_classification
|
|
17 |
from alphabet_sign_language_detection import sign_language_classification
|
18 |
from rice_leaf_disease import classify_leaf_disease
|
19 |
from traffic_density import traffic_density_classification
|
|
|
20 |
|
21 |
# Main classification function for multi-model classification.
|
22 |
def classify(image, model_name):
|
@@ -48,6 +49,8 @@ def classify(image, model_name):
|
|
48 |
return sign_language_classification(image)
|
49 |
elif model_name == "traffic density":
|
50 |
return traffic_density_classification(image)
|
|
|
|
|
51 |
else:
|
52 |
return {"Error": "No model selected"}
|
53 |
|
@@ -57,7 +60,7 @@ def select_model(model_name):
|
|
57 |
"gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
|
58 |
"gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
|
59 |
"fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary",
|
60 |
-
"sign language": "secondary", "traffic density": "secondary"
|
61 |
}
|
62 |
model_variants[model_name] = "primary"
|
63 |
return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
|
@@ -101,9 +104,9 @@ def infer(image, candidate_labels):
|
|
101 |
sg1_probs, sg2_probs = siglip_detector(image, candidate_labels)
|
102 |
return postprocess_siglip(sg1_probs, sg2_probs, labels=candidate_labels)
|
103 |
|
104 |
-
# Build the Gradio Interface with two
|
105 |
with gr.Blocks() as demo:
|
106 |
-
gr.Markdown("# Multi-
|
107 |
|
108 |
with gr.Tabs():
|
109 |
# Tab 1: Multi-Model Classification
|
@@ -125,14 +128,23 @@ with gr.Blocks() as demo:
|
|
125 |
leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary")
|
126 |
sign_language_btn = gr.Button("Alphabet Sign Language", variant="secondary")
|
127 |
traffic_density_btn = gr.Button("Traffic Density", variant="secondary")
|
|
|
128 |
|
129 |
selected_model = gr.State("age")
|
130 |
gr.Markdown("### Current Model:")
|
131 |
model_display = gr.Textbox(value="age", interactive=False)
|
132 |
selected_model.change(lambda m: m, selected_model, model_display)
|
133 |
|
134 |
-
buttons = [
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
for btn, name in zip(buttons, model_names):
|
138 |
btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
|
|
|
17 |
from alphabet_sign_language_detection import sign_language_classification
|
18 |
from rice_leaf_disease import classify_leaf_disease
|
19 |
from traffic_density import traffic_density_classification
|
20 |
+
from clip_art import clipart_classification # New import
|
21 |
|
22 |
# Main classification function for multi-model classification.
|
23 |
def classify(image, model_name):
|
|
|
49 |
return sign_language_classification(image)
|
50 |
elif model_name == "traffic density":
|
51 |
return traffic_density_classification(image)
|
52 |
+
elif model_name == "clip art": # New option
|
53 |
+
return clipart_classification(image)
|
54 |
else:
|
55 |
return {"Error": "No model selected"}
|
56 |
|
|
|
60 |
"gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
|
61 |
"gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
|
62 |
"fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary",
|
63 |
+
"sign language": "secondary", "traffic density": "secondary", "clip art": "secondary" # New model variant
|
64 |
}
|
65 |
model_variants[model_name] = "primary"
|
66 |
return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
|
|
|
104 |
sg1_probs, sg2_probs = siglip_detector(image, candidate_labels)
|
105 |
return postprocess_siglip(sg1_probs, sg2_probs, labels=candidate_labels)
|
106 |
|
107 |
+
# Build the Gradio Interface with two tabs.
|
108 |
with gr.Blocks() as demo:
|
109 |
+
gr.Markdown("# Multi-Domain & Zero-Shot Image Classification")
|
110 |
|
111 |
with gr.Tabs():
|
112 |
# Tab 1: Multi-Model Classification
|
|
|
128 |
leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary")
|
129 |
sign_language_btn = gr.Button("Alphabet Sign Language", variant="secondary")
|
130 |
traffic_density_btn = gr.Button("Traffic Density", variant="secondary")
|
131 |
+
clip_art_btn = gr.Button("Art Classification", variant="secondary") # New button
|
132 |
|
133 |
selected_model = gr.State("age")
|
134 |
gr.Markdown("### Current Model:")
|
135 |
model_display = gr.Textbox(value="age", interactive=False)
|
136 |
selected_model.change(lambda m: m, selected_model, model_display)
|
137 |
|
138 |
+
buttons = [
|
139 |
+
gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn,
|
140 |
+
age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn,
|
141 |
+
sign_language_btn, traffic_density_btn, clip_art_btn # Include new button
|
142 |
+
]
|
143 |
+
model_names = [
|
144 |
+
"gender", "emotion", "dog breed", "deepfake", "gym workout", "waste",
|
145 |
+
"age", "mnist", "fashion_mnist", "food", "bird", "leaf disease",
|
146 |
+
"sign language", "traffic density", "clip art" # New model name
|
147 |
+
]
|
148 |
|
149 |
for btn, name in zip(buttons, model_names):
|
150 |
btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
|