prithivMLmods commited on
Commit
0358302
·
verified ·
1 Parent(s): 3a72779

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -1
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  from gender_classification import gender_classification
3
  from emotion_classification import emotion_classification
 
4
 
5
  # Functions to update the model state when a button is clicked.
6
  def select_gender():
@@ -9,27 +10,37 @@ def select_gender():
9
  def select_emotion():
10
  return "emotion"
11
 
 
 
 
12
  # Main classification function that calls the appropriate model based on selection.
13
  def classify(image, model_name):
14
  if model_name == "gender":
15
  return gender_classification(image)
16
  elif model_name == "emotion":
17
  return emotion_classification(image)
 
 
18
  else:
19
  return {"Error": "No model selected"}
20
 
21
  with gr.Blocks() as demo:
22
  # Sidebar with title and model selection buttons.
23
  with gr.Sidebar():
24
- gr.Markdown("# SigLIP2 Classification")
25
  with gr.Row():
26
  gender_btn = gr.Button("Gender Classification")
27
  emotion_btn = gr.Button("Emotion Classification")
 
 
28
  # State to hold the current model choice.
29
  selected_model = gr.State("gender")
 
30
  # Set model state when buttons are clicked.
31
  gender_btn.click(fn=select_gender, inputs=[], outputs=selected_model)
32
  emotion_btn.click(fn=select_emotion, inputs=[], outputs=selected_model)
 
 
33
  gr.Markdown("### Current Model:")
34
  model_display = gr.Textbox(value="gender", interactive=False)
35
  # Update display when state changes.
 
1
  import gradio as gr
2
  from gender_classification import gender_classification
3
  from emotion_classification import emotion_classification
4
+ from dog_breed import dog_breed_classification
5
 
6
  # Functions to update the model state when a button is clicked.
7
  def select_gender():
 
10
  def select_emotion():
11
  return "emotion"
12
 
13
+ def select_dog_breed():
14
+ return "dog_breed"
15
+
16
  # Main classification function that calls the appropriate model based on selection.
17
  def classify(image, model_name):
18
  if model_name == "gender":
19
  return gender_classification(image)
20
  elif model_name == "emotion":
21
  return emotion_classification(image)
22
+ elif model_name == "dog_breed":
23
+ return dog_breed_classification(image)
24
  else:
25
  return {"Error": "No model selected"}
26
 
27
  with gr.Blocks() as demo:
28
  # Sidebar with title and model selection buttons.
29
  with gr.Sidebar():
30
+ gr.Markdown("# SigLIP2 224")
31
  with gr.Row():
32
  gender_btn = gr.Button("Gender Classification")
33
  emotion_btn = gr.Button("Emotion Classification")
34
+ dog_breed_btn = gr.Button("Dog Breed Classification")
35
+
36
  # State to hold the current model choice.
37
  selected_model = gr.State("gender")
38
+
39
  # Set model state when buttons are clicked.
40
  gender_btn.click(fn=select_gender, inputs=[], outputs=selected_model)
41
  emotion_btn.click(fn=select_emotion, inputs=[], outputs=selected_model)
42
+ dog_breed_btn.click(fn=select_dog_breed, inputs=[], outputs=selected_model)
43
+
44
  gr.Markdown("### Current Model:")
45
  model_display = gr.Textbox(value="gender", interactive=False)
46
  # Update display when state changes.