Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import spaces | |
from transformers import AutoModel, AutoProcessor | |
from gender_classification import gender_classification | |
from emotion_classification import emotion_classification | |
from dog_breed import dog_breed_classification | |
from deepfake_quality import deepfake_classification | |
from gym_workout_classification import workout_classification | |
from augmented_waste_classifier import waste_classification | |
from age_classification import age_classification | |
from mnist_digits import classify_digit | |
from fashion_mnist_cloth import fashion_mnist_classification | |
from indian_western_food_classify import food_classification | |
from bird_species import bird_classification | |
from alphabet_sign_language_detection import sign_language_classification | |
from rice_leaf_disease import classify_leaf_disease | |
from traffic_density import traffic_density_classification | |
from clip_art import clipart_classification | |
from multisource_121 import multisource_classification | |
from painting_126 import painting_classification | |
from sketch_126 import sketch_classification # New import | |
# Main classification function for multi-model classification. | |
def classify(image, model_name): | |
if model_name == "gender": | |
return gender_classification(image) | |
elif model_name == "emotion": | |
return emotion_classification(image) | |
elif model_name == "dog breed": | |
return dog_breed_classification(image) | |
elif model_name == "deepfake": | |
return deepfake_classification(image) | |
elif model_name == "gym workout": | |
return workout_classification(image) | |
elif model_name == "waste": | |
return waste_classification(image) | |
elif model_name == "age": | |
return age_classification(image) | |
elif model_name == "mnist": | |
return classify_digit(image) | |
elif model_name == "fashion_mnist": | |
return fashion_mnist_classification(image) | |
elif model_name == "food": | |
return food_classification(image) | |
elif model_name == "bird": | |
return bird_classification(image) | |
elif model_name == "leaf disease": | |
return classify_leaf_disease(image) | |
elif model_name == "sign language": | |
return sign_language_classification(image) | |
elif model_name == "traffic density": | |
return traffic_density_classification(image) | |
elif model_name == "clip art": | |
return clipart_classification(image) | |
elif model_name == "multisource": | |
return multisource_classification(image) | |
elif model_name == "painting": | |
return painting_classification(image) | |
elif model_name == "sketch": # New option | |
return sketch_classification(image) | |
else: | |
return {"Error": "No model selected"} | |
# Function to update the selected model and button styles. | |
def select_model(model_name): | |
model_variants = { | |
"gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary", | |
"gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary", | |
"fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary", | |
"sign language": "secondary", "traffic density": "secondary", "clip art": "secondary", | |
"multisource": "secondary", "painting": "secondary", "sketch": "secondary" # New model variant | |
} | |
model_variants[model_name] = "primary" | |
return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants)) | |
# Zero-Shot Classification Setup (SigLIP models) | |
sg1_ckpt = "google/siglip-so400m-patch14-384" | |
siglip1_model = AutoModel.from_pretrained(sg1_ckpt, device_map="cpu").eval() | |
siglip1_processor = AutoProcessor.from_pretrained(sg1_ckpt) | |
sg2_ckpt = "google/siglip2-so400m-patch14-384" | |
siglip2_model = AutoModel.from_pretrained(sg2_ckpt, device_map="cpu").eval() | |
siglip2_processor = AutoProcessor.from_pretrained(sg2_ckpt) | |
def postprocess_siglip(sg1_probs, sg2_probs, labels): | |
sg1_output = {labels[i]: sg1_probs[0][i].item() for i in range(len(labels))} | |
sg2_output = {labels[i]: sg2_probs[0][i].item() for i in range(len(labels))} | |
return sg1_output, sg2_output | |
def siglip_detector(image, texts): | |
sg1_inputs = siglip1_processor( | |
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64 | |
).to("cpu") | |
sg2_inputs = siglip2_processor( | |
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64 | |
).to("cpu") | |
with torch.no_grad(): | |
sg1_outputs = siglip1_model(**sg1_inputs) | |
sg2_outputs = siglip2_model(**sg2_inputs) | |
sg1_logits_per_image = sg1_outputs.logits_per_image | |
sg2_logits_per_image = sg2_outputs.logits_per_image | |
sg1_probs = torch.sigmoid(sg1_logits_per_image) | |
sg2_probs = torch.sigmoid(sg2_logits_per_image) | |
return sg1_probs, sg2_probs | |
def infer(image, candidate_labels): | |
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")] | |
sg1_probs, sg2_probs = siglip_detector(image, candidate_labels) | |
return postprocess_siglip(sg1_probs, sg2_probs, labels=candidate_labels) | |
# Build the Gradio Interface with two tabs. | |
with gr.Blocks(theme="YTheme/Minecraft") as demo: | |
gr.Markdown("# Multi-Domain & Zero-Shot Image Classification") | |
with gr.Tabs(): | |
# Tab 1: Multi-Model Classification | |
with gr.Tab("Multi-Domain Classification"): | |
with gr.Sidebar(): | |
gr.Markdown("# Choose Domain") | |
with gr.Row(): | |
age_btn = gr.Button("Age Classification", variant="primary") | |
gender_btn = gr.Button("Gender Classification", variant="secondary") | |
emotion_btn = gr.Button("Emotion Classification", variant="secondary") | |
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary") | |
dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary") | |
bird_btn = gr.Button("Bird Species Classification", variant="secondary") | |
waste_btn = gr.Button("Waste Classification", variant="secondary") | |
deepfake_btn = gr.Button("Deepfake Quality Test", variant="secondary") | |
traffic_density_btn = gr.Button("Traffic Density", variant="secondary") | |
sign_language_btn = gr.Button("Alphabet Sign Language", variant="secondary") | |
clip_art_btn = gr.Button("Clip Art 126", variant="secondary") | |
mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary") | |
fashion_mnist_btn = gr.Button("Fashion MNIST (only cloth)", variant="secondary") | |
food_btn = gr.Button("Indian/Western Food Type", variant="secondary") | |
leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary") | |
multisource_btn = gr.Button("Multi Source 121", variant="secondary") | |
painting_btn = gr.Button("Painting 126", variant="secondary") | |
sketch_btn = gr.Button("Sketch 126", variant="secondary") | |
selected_model = gr.State("age") | |
gr.Markdown("### Current Model:") | |
model_display = gr.Textbox(value="age", interactive=False) | |
selected_model.change(lambda m: m, selected_model, model_display) | |
buttons = [ | |
gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, | |
age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn, | |
sign_language_btn, traffic_density_btn, clip_art_btn, multisource_btn, painting_btn, sketch_btn # Include new button | |
] | |
model_names = [ | |
"gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", | |
"age", "mnist", "fashion_mnist", "food", "bird", "leaf disease", | |
"sign language", "traffic density", "clip art", "multisource", "painting", "sketch" # New model name | |
] | |
for btn, name in zip(buttons, model_names): | |
btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons) | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="numpy", label="Upload Image") | |
analyze_btn = gr.Button("Classify / Predict") | |
output_label = gr.Label(label="Prediction Scores") | |
analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label) | |
# Tab 2: Zero-Shot Classification (SigLIP) | |
with gr.Tab("Zero-Shot Classification"): | |
gr.Markdown("## Compare SigLIP 1 and SigLIP 2 on Zero-Shot Classification") | |
with gr.Row(): | |
with gr.Column(): | |
zs_image_input = gr.Image(type="pil", label="Upload Image") | |
zs_text_input = gr.Textbox(label="Input a list of labels (comma separated)") | |
zs_run_button = gr.Button("Run") | |
with gr.Column(): | |
siglip1_output = gr.Label(label="SigLIP 1 Output", num_top_classes=3) | |
siglip2_output = gr.Label(label="SigLIP 2 Output", num_top_classes=3) | |
zs_run_button.click(fn=infer, inputs=[zs_image_input, zs_text_input], outputs=[siglip1_output, siglip2_output]) | |
demo.launch() |