Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from gender_classification import gender_classification | |
from emotion_classification import emotion_classification | |
from dog_breed import dog_breed_classification | |
from deepfake_vs_real import deepfake_classification | |
from gym_workout_classification import workout_classification | |
from augmented_waste_classifier import waste_classification | |
from age_classification import age_classification | |
from mnist_digits import classify_digit | |
from fashion_mnist_cloth import fashion_mnist_classification | |
from indian_western_food_classify import food_classification | |
from bird_species import bird_classification | |
from alphabet_sign_language_detection import sign_language_classification | |
from rice_leaf_disease import classify_leaf_disease | |
from traffic_density import traffic_density_classification | |
# Main classification function that calls the appropriate model based on selection. | |
def classify(image, model_name): | |
if model_name == "gender": | |
return gender_classification(image) | |
elif model_name == "emotion": | |
return emotion_classification(image) | |
elif model_name == "dog breed": | |
return dog_breed_classification(image) | |
elif model_name == "deepfake": | |
return deepfake_classification(image) | |
elif model_name == "gym workout": | |
return workout_classification(image) | |
elif model_name == "waste": | |
return waste_classification(image) | |
elif model_name == "age": | |
return age_classification(image) | |
elif model_name == "mnist": | |
return classify_digit(image) | |
elif model_name == "fashion_mnist": | |
return fashion_mnist_classification(image) | |
elif model_name == "food": | |
return food_classification(image) | |
elif model_name == "bird": | |
return bird_classification(image) | |
elif model_name == "leaf disease": | |
return classify_leaf_disease(image) | |
elif model_name == "sign language": | |
return sign_language_classification(image) | |
elif model_name == "traffic density": | |
return traffic_density_classification(image) | |
else: | |
return {"Error": "No model selected"} | |
# Function to update the selected model and button styles. | |
def select_model(model_name): | |
model_variants = { | |
"gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary", | |
"gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary", | |
"fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary", | |
"sign language": "secondary", "traffic density": "secondary" | |
} | |
model_variants[model_name] = "primary" | |
return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants)) | |
with gr.Blocks() as demo: | |
with gr.Sidebar(): | |
gr.Markdown("# Choose Domain") | |
with gr.Row(): | |
age_btn = gr.Button("Age Classification", variant="primary") | |
gender_btn = gr.Button("Gender Classification", variant="secondary") | |
emotion_btn = gr.Button("Emotion Classification", variant="secondary") | |
dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary") | |
deepfake_btn = gr.Button("Deepfake vs Real", variant="secondary") | |
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary") | |
waste_btn = gr.Button("Waste Classification", variant="secondary") | |
mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary") | |
fashion_mnist_btn = gr.Button("Fashion MNIST Classification", variant="secondary") | |
food_btn = gr.Button("Indian/Western Food", variant="secondary") | |
bird_btn = gr.Button("Bird Species Classification", variant="secondary") | |
leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary") | |
sign_language_btn = gr.Button("Alphabet Sign Language", variant="secondary") | |
traffic_density_btn = gr.Button("Traffic Density", variant="secondary") | |
selected_model = gr.State("age") | |
gr.Markdown("### Current Model:") | |
model_display = gr.Textbox(value="age", interactive=False) | |
selected_model.change(lambda m: m, selected_model, model_display) | |
buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn, sign_language_btn, traffic_density_btn] | |
model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist", "food", "bird", "leaf disease", "sign language", "traffic density"] | |
for btn, name in zip(buttons, model_names): | |
btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons) | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="numpy", label="Upload Image") | |
analyze_btn = gr.Button("Classify / Predict") | |
output_label = gr.Label(label="Prediction Scores") # Output on the right | |
analyze_btn.click(fn=classify, inputs=[image_input], outputs=output_label) | |
demo.launch() |