Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import spaces | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
from snac import SNAC | |
def redistribute_codes(row): | |
""" | |
Convert a sequence of token codes into an audio waveform using SNAC. | |
The code assumes each 7 tokens represent one group of instructions. | |
""" | |
row_length = row.size(0) | |
new_length = (row_length // 7) * 7 | |
trimmed_row = row[:new_length] | |
code_list = [t - 128266 for t in trimmed_row] | |
layer_1, layer_2, layer_3 = [], [], [] | |
for i in range((len(code_list) + 1) // 7): | |
layer_1.append(code_list[7 * i][None]) | |
layer_2.append(code_list[7 * i + 1][None] - 4096) | |
layer_3.append(code_list[7 * i + 2][None] - (2 * 4096)) | |
layer_3.append(code_list[7 * i + 3][None] - (3 * 4096)) | |
layer_2.append(code_list[7 * i + 4][None] - (4 * 4096)) | |
layer_3.append(code_list[7 * i + 5][None] - (5 * 4096)) | |
layer_3.append(code_list[7 * i + 6][None] - (6 * 4096)) | |
with torch.no_grad(): | |
codes = [ | |
torch.concat(layer_1), | |
torch.concat(layer_2), | |
torch.concat(layer_3) | |
] | |
for i in range(len(codes)): | |
codes[i][codes[i] < 0] = 0 | |
codes[i] = codes[i][None] | |
audio_hat = snac_model.decode(codes) | |
return audio_hat.cpu()[0, 0] | |
# Load the SNAC model for audio decoding | |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to("cuda") | |
# Load the single-speaker language model | |
tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Llama-3B-Mono-Cooper') | |
model = AutoModelForCausalLM.from_pretrained( | |
'prithivMLmods/Llama-3B-Mono-Cooper', torch_dtype=torch.bfloat16 | |
).cuda() | |
def generate_audio(text, temperature, top_p, max_new_tokens): | |
""" | |
Given input text, generate speech audio. | |
""" | |
speaker = "Cooper" | |
prompt = f'<custom_token_3><|begin_of_text|>{speaker}: {text}<|eot_id|><custom_token_4><custom_token_5><custom_token_1>' | |
input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').to('cuda') | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
**input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=1.1, | |
num_return_sequences=1, | |
eos_token_id=128258, | |
) | |
row = generated_ids[0, input_ids['input_ids'].shape[1]:] | |
y_tensor = redistribute_codes(row) | |
y_np = y_tensor.detach().cpu().numpy() | |
return (24000, y_np) | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Llama-3B-Mono-Cooper - Single Speaker Audio Generation") | |
gr.Markdown("Generate speech audio using the `prithivMLmods/Llama-3B-Mono-Cooper` model.") | |
with gr.Row(): | |
text_input = gr.Textbox(lines=4, label="Input Text") | |
with gr.Row(): | |
temp_slider = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.9, label="Temperature") | |
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.8, label="Top-p") | |
tokens_slider = gr.Slider(minimum=100, maximum=2000, step=50, value=1200, label="Max New Tokens") | |
output_audio = gr.Audio(type="numpy", label="Generated Audio") | |
generate_button = gr.Button("Generate Audio") | |
generate_button.click( | |
fn=generate_audio, | |
inputs=[text_input, temp_slider, top_p_slider, tokens_slider], | |
outputs=output_audio | |
) | |
if __name__ == "__main__": | |
demo.launch() | |