Callisto-OCR-2B / app.py
prithivMLmods's picture
Update app.py
08d30fe verified
raw
history blame
5.65 kB
import gradio as gr
from gender_classification import gender_classification
from emotion_classification import emotion_classification
from dog_breed import dog_breed_classification
from deepfake_vs_real import deepfake_classification
from gym_workout_classification import workout_classification
from augmented_waste_classifier import waste_classification
from age_classification import age_classification
# Main classification function that calls the appropriate model based on selection.
def classify(image, model_name):
if model_name == "gender":
return gender_classification(image)
elif model_name == "emotion":
return emotion_classification(image)
elif model_name == "dog breed":
return dog_breed_classification(image)
elif model_name == "deepfake":
return deepfake_classification(image)
elif model_name == "gym workout":
return workout_classification(image)
elif model_name == "waste":
return waste_classification(image)
elif model_name == "age":
return age_classification(image)
else:
return {"Error": "No model selected"}
# Function to update the selected model and button styles.
def select_model(model_name):
# Set each button's variant to "primary" if selected, otherwise "secondary"
gender_variant = "primary" if model_name == "gender" else "secondary"
emotion_variant = "primary" if model_name == "emotion" else "secondary"
dog_breed_variant = "primary" if model_name == "dog breed" else "secondary"
deepfake_variant = "primary" if model_name == "deepfake" else "secondary"
gym_workout_variant = "primary" if model_name == "gym workout" else "secondary"
waste_variant = "primary" if model_name == "waste" else "secondary"
age_variant = "primary" if model_name == "age" else "secondary"
# Return new state and update objects for each button in the specified order.
return (
model_name,
gr.update(variant=gender_variant),
gr.update(variant=emotion_variant),
gr.update(variant=dog_breed_variant),
gr.update(variant=deepfake_variant),
gr.update(variant=gym_workout_variant),
gr.update(variant=waste_variant),
gr.update(variant=age_variant)
)
with gr.Blocks() as demo:
# Sidebar with title and model selection buttons.
with gr.Sidebar():
gr.Markdown("# SigLIP2 224")
with gr.Row():
# Initialize buttons with variants. Default is "age" set to primary.
age_btn = gr.Button("Age Classification", variant="primary")
gender_btn = gr.Button("Gender Classification", variant="secondary")
emotion_btn = gr.Button("Emotion Classification", variant="secondary")
dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary")
deepfake_btn = gr.Button("Deepfake vs Real", variant="secondary")
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
waste_btn = gr.Button("Waste Classification", variant="secondary")
# State to hold the current model choice.
selected_model = gr.State("age")
gr.Markdown("### Current Model:")
model_display = gr.Textbox(value="age", interactive=False)
# Update display when state changes.
selected_model.change(lambda m: m, selected_model, model_display)
# Set up click events for each button, updating state and button variants.
gender_btn.click(fn=lambda: select_model("gender"),
inputs=[],
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
emotion_btn.click(fn=lambda: select_model("emotion"),
inputs=[],
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
dog_breed_btn.click(fn=lambda: select_model("dog breed"),
inputs=[],
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
deepfake_btn.click(fn=lambda: select_model("deepfake"),
inputs=[],
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
gym_workout_btn.click(fn=lambda: select_model("gym workout"),
inputs=[],
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
waste_btn.click(fn=lambda: select_model("waste"),
inputs=[],
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
age_btn.click(fn=lambda: select_model("age"),
inputs=[],
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
# Main interface: image input, analyze button, and prediction output.
with gr.Column():
image_input = gr.Image(type="numpy", label="Upload Image")
analyze_btn = gr.Button("Classify / Predict")
output_label = gr.Label(label="Prediction Scores")
# When the "Analyze" button is clicked, use the selected model to classify the image.
analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)
demo.launch()