Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from gender_classification import gender_classification | |
from emotion_classification import emotion_classification | |
from dog_breed import dog_breed_classification | |
from deepfake_vs_real import deepfake_classification | |
from gym_workout_classification import workout_classification | |
from augmented_waste_classifier import waste_classification | |
from age_classification import age_classification | |
# Main classification function that calls the appropriate model based on selection. | |
def classify(image, model_name): | |
if model_name == "gender": | |
return gender_classification(image) | |
elif model_name == "emotion": | |
return emotion_classification(image) | |
elif model_name == "dog breed": | |
return dog_breed_classification(image) | |
elif model_name == "deepfake": | |
return deepfake_classification(image) | |
elif model_name == "gym workout": | |
return workout_classification(image) | |
elif model_name == "waste": | |
return waste_classification(image) | |
elif model_name == "age": | |
return age_classification(image) | |
else: | |
return {"Error": "No model selected"} | |
# Function to update the selected model and button styles. | |
def select_model(model_name): | |
# Set each button's variant to "primary" if selected, otherwise "secondary" | |
gender_variant = "primary" if model_name == "gender" else "secondary" | |
emotion_variant = "primary" if model_name == "emotion" else "secondary" | |
dog_breed_variant = "primary" if model_name == "dog breed" else "secondary" | |
deepfake_variant = "primary" if model_name == "deepfake" else "secondary" | |
gym_workout_variant = "primary" if model_name == "gym workout" else "secondary" | |
waste_variant = "primary" if model_name == "waste" else "secondary" | |
age_variant = "primary" if model_name == "age" else "secondary" | |
# Return new state and update objects for each button in the specified order. | |
return ( | |
model_name, | |
gr.update(variant=gender_variant), | |
gr.update(variant=emotion_variant), | |
gr.update(variant=dog_breed_variant), | |
gr.update(variant=deepfake_variant), | |
gr.update(variant=gym_workout_variant), | |
gr.update(variant=waste_variant), | |
gr.update(variant=age_variant) | |
) | |
with gr.Blocks() as demo: | |
# Sidebar with title and model selection buttons. | |
with gr.Sidebar(): | |
gr.Markdown("# SigLIP2 224") | |
with gr.Row(): | |
# Initialize buttons with variants. Default is "age" set to primary. | |
age_btn = gr.Button("Age Classification", variant="primary") | |
gender_btn = gr.Button("Gender Classification", variant="secondary") | |
emotion_btn = gr.Button("Emotion Classification", variant="secondary") | |
dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary") | |
deepfake_btn = gr.Button("Deepfake vs Real", variant="secondary") | |
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary") | |
waste_btn = gr.Button("Waste Classification", variant="secondary") | |
# State to hold the current model choice. | |
selected_model = gr.State("age") | |
gr.Markdown("### Current Model:") | |
model_display = gr.Textbox(value="age", interactive=False) | |
# Update display when state changes. | |
selected_model.change(lambda m: m, selected_model, model_display) | |
# Set up click events for each button, updating state and button variants. | |
gender_btn.click(fn=lambda: select_model("gender"), | |
inputs=[], | |
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn]) | |
emotion_btn.click(fn=lambda: select_model("emotion"), | |
inputs=[], | |
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn]) | |
dog_breed_btn.click(fn=lambda: select_model("dog breed"), | |
inputs=[], | |
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn]) | |
deepfake_btn.click(fn=lambda: select_model("deepfake"), | |
inputs=[], | |
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn]) | |
gym_workout_btn.click(fn=lambda: select_model("gym workout"), | |
inputs=[], | |
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn]) | |
waste_btn.click(fn=lambda: select_model("waste"), | |
inputs=[], | |
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn]) | |
age_btn.click(fn=lambda: select_model("age"), | |
inputs=[], | |
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn]) | |
# Main interface: image input, analyze button, and prediction output. | |
with gr.Column(): | |
image_input = gr.Image(type="numpy", label="Upload Image") | |
analyze_btn = gr.Button("Classify / Predict") | |
output_label = gr.Label(label="Prediction Scores") | |
# When the "Analyze" button is clicked, use the selected model to classify the image. | |
analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label) | |
demo.launch() |