Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,005 Bytes
f3b1002 e86a765 d48854d f3b1002 d48854d f3b1002 ff334f0 f3b1002 d48854d f3b1002 8de4827 f3b1002 8de4827 f3b1002 8de4827 f3b1002 8de4827 f3b1002 e86a765 f3b1002 3e463de f3b1002 3e463de f3b1002 3e463de f3b1002 3e463de f3b1002 3e463de f3b1002 3e463de d48854d f3b1002 3e463de f3b1002 3e463de f3b1002 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import subprocess
subprocess.run(
'pip install flash-attn==2.7.0.post2 --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
subprocess.run(
'pip install transformers',
shell=True
)
import spaces
import os
import re
import logging
from typing import List
from threading import Thread
import base64
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# ----------------------------------------------------------------------
# 1. Setup Model & Tokenizer
# ----------------------------------------------------------------------
model_name = 'prithivMLmods/Raptor-X6' # Change as needed
use_thread = True # Generation happens in a background thread
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True
).to("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ----------------------------------------------------------------------
# 2. Two-Phase Prompt Templates
# ----------------------------------------------------------------------
s1_inference_prompt_think_only = """<|im_start|>user
{question}<|im_end|>
<|im_start|>assistant
<|im_start|>think
"""
# ----------------------------------------------------------------------
# 3. Generation Parameter Setup
# ----------------------------------------------------------------------
THINK_MAX_NEW_TOKENS = 12000
ANSWER_MAX_NEW_TOKENS = 12000
def initialize_gen_kwargs():
return {
"max_new_tokens": 1024, # default; will be overwritten per phase
"do_sample": True,
"temperature": 0.7,
"top_p": 0.9,
"repetition_penalty": 1.05,
# "eos_token_id": model.generation_config.eos_token_id, # Removed to avoid premature stopping
"pad_token_id": tokenizer.pad_token_id,
"use_cache": True,
"streamer": None # dynamically added
}
# ----------------------------------------------------------------------
# 4. Helper to submit chat
# ----------------------------------------------------------------------
def submit_chat(chatbot, text_input):
if not text_input.strip():
return chatbot, ""
response = ""
chatbot.append((text_input, response))
return chatbot, ""
# ----------------------------------------------------------------------
# 5. Artifacts Handling
# We parse code from the final answer and display it in an iframe
# ----------------------------------------------------------------------
def extract_html_code_block(text: str) -> str:
"""
Look for a ```html ... ``` block in the text.
If found, return only that block content.
Otherwise, return the entire text.
"""
pattern = r'```html\s*(.*?)\s*```'
match = re.search(pattern, text, re.DOTALL)
if match:
return match.group(1).strip()
else:
return text.strip()
def send_to_sandbox(html_code: str) -> str:
"""
Convert the code to a data URI iframe so it can be rendered
inside Gradio HTML component.
"""
encoded_html = base64.b64encode(html_code.encode('utf-8')).decode('utf-8')
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
return f'<iframe src="{data_uri}" width="100%" height="920px"></iframe>'
# ----------------------------------------------------------------------
# 6. The Two-Phase Streaming Inference
# - Phase 1: "think" (chain-of-thought)
# - Phase 2: "answer"
# ----------------------------------------------------------------------
@spaces.GPU
def ovis_chat(chatbot: List[List[str]]):
# Phase 1: chain-of-thought
last_query = chatbot[-1][0]
formatted_think_prompt = s1_inference_prompt_think_only.format(question=last_query)
input_ids_think = tokenizer.encode(formatted_think_prompt, return_tensors="pt").to(model.device)
attention_mask_think = torch.ne(input_ids_think, tokenizer.pad_token_id).to(model.device)
think_inputs = {
"input_ids": input_ids_think,
"attention_mask": attention_mask_think
}
gen_kwargs_think = initialize_gen_kwargs()
gen_kwargs_think["max_new_tokens"] = THINK_MAX_NEW_TOKENS
think_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
gen_kwargs_think["streamer"] = think_streamer
full_think = ""
with torch.inference_mode():
thread_think = Thread(target=lambda: model.generate(**think_inputs, **gen_kwargs_think))
thread_think.start()
for new_text in think_streamer:
full_think += new_text
display_text = f"<|im_start|>think\n{full_think.strip()}"
chatbot[-1][1] = display_text
yield chatbot, "" # second return is artifact placeholder
thread_think.join()
# Phase 2: answer
new_prompt = formatted_think_prompt + full_think.strip() + "\n<|im_start|>answer\n"
input_ids_answer = tokenizer.encode(new_prompt, return_tensors="pt").to(model.device)
attention_mask_answer = torch.ne(input_ids_answer, tokenizer.pad_token_id).to(model.device)
answer_inputs = {
"input_ids": input_ids_answer,
"attention_mask": attention_mask_answer
}
gen_kwargs_answer = initialize_gen_kwargs()
gen_kwargs_answer["max_new_tokens"] = ANSWER_MAX_NEW_TOKENS
answer_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
gen_kwargs_answer["streamer"] = answer_streamer
full_answer = ""
with torch.inference_mode():
thread_answer = Thread(target=lambda: model.generate(**answer_inputs, **gen_kwargs_answer))
thread_answer.start()
for new_text in answer_streamer:
full_answer += new_text
display_text = (
f"<|im_start|>think\n{full_think.strip()}\n\n"
f"<|im_start|>answer\n{full_answer.strip()}"
)
chatbot[-1][1] = display_text
yield chatbot, ""
thread_answer.join()
log_conversation(chatbot)
# Once final answer is complete, parse out HTML code block and
# return it as an artifact (iframe).
html_code = extract_html_code_block(full_answer)
sandbox_iframe = send_to_sandbox(html_code)
yield chatbot, sandbox_iframe
# ----------------------------------------------------------------------
# 7. Logging and Clearing
# ----------------------------------------------------------------------
def log_conversation(chatbot: List[List[str]]):
logger.info("[CONVERSATION]")
for i, (query, response) in enumerate(chatbot, 1):
logger.info(f"Q{i}: {query}\nA{i}: {response}")
def clear_chat():
return [], "", ""
# ----------------------------------------------------------------------
# 8. Gradio UI Setup
# ----------------------------------------------------------------------
css_code = """
.left_header {
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}
.right_panel {
margin-top: 16px;
border: 1px solid #BFBFC4;
border-radius: 8px;
overflow: hidden;
}
.render_header {
height: 30px;
width: 100%;
padding: 5px 16px;
background-color: #f5f5f5;
}
.header_btn {
display: inline-block;
height: 10px;
width: 10px;
border-radius: 50%;
margin-right: 4px;
}
.render_header > .header_btn:nth-child(1) {
background-color: #f5222d;
}
.render_header > .header_btn:nth-child(2) {
background-color: #faad14;
}
.render_header > .header_btn:nth-child(3) {
background-color: #52c41a;
}
.right_content {
height: 920px;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}
.html_content {
width: 100%;
height: 920px;
}
"""
svg_content = """
<svg width="40" height="40" viewBox="0 0 45 45" fill="none" xmlns="http://www.w3.org/2000/svg">
<circle cx="22.5" cy="22.5" r="22.5" fill="#5572F9"/>
<path d="M22.5 11.25L26.25 16.875H18.75L22.5 11.25Z" fill="white"/>
<path d="M22.5 33.75L26.25 28.125H18.75L22.5 33.75Z" fill="white"/>
<path d="M28.125 22.5L22.5 28.125L16.875 22.5L22.5 16.875L28.125 22.5Z" fill="white"/>
</svg>
"""
with gr.Blocks(title=model_name.split('/')[-1], css=css_code) as demo:
gr.HTML(f"""
<div class="left_header" style="margin-bottom: 20px;">
{svg_content}
<h1>{model_name.split('/')[-1]} - Chat + Artifacts</h1>
<p>(Two-phase chain-of-thought with artifact extraction)</p>
</div>
""")
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(
label="Chat",
height=520,
show_copy_button=True
)
with gr.Row():
text_input = gr.Textbox(
label="Prompt",
placeholder="Enter your query...",
lines=1
)
with gr.Row():
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(scale=6):
gr.HTML('<div class="render_header"><span class="header_btn"></span><span class="header_btn"></span><span class="header_btn"></span></div>')
artifact_html = gr.HTML(
value="",
elem_classes="html_content"
)
submit_btn.click(
submit_chat, [chatbot, text_input], [chatbot, text_input]
).then(
ovis_chat, [chatbot], [chatbot, artifact_html]
)
text_input.submit(
submit_chat, [chatbot, text_input], [chatbot, text_input]
).then(
ovis_chat, [chatbot], [chatbot, artifact_html]
)
clear_btn.click(
clear_chat,
outputs=[chatbot, text_input, artifact_html]
)
demo.queue(default_concurrency_limit=1).launch(server_name="0.0.0.0", share=True) |