|
import nltk |
|
import re |
|
import nltkmodule |
|
|
|
from newspaper import Article, fulltext |
|
import requests |
|
import itertools |
|
import os |
|
|
|
from nltk.tokenize import word_tokenize, sent_tokenize |
|
from sentence_transformers import SentenceTransformer |
|
import pandas as pd |
|
import numpy as np |
|
from pandas import ExcelWriter |
|
from torch.utils.data import DataLoader |
|
import math |
|
from sentence_transformers import models |
|
from nltk.corpus import stopwords |
|
stop_words = stopwords.words('english') |
|
import matplotlib.pyplot as plt |
|
from sklearn.cluster import KMeans |
|
from sklearn.decomposition import PCA |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import scipy.spatial |
|
import networkx as nx |
|
import scispacy |
|
import spacy |
|
import en_core_sci_lg |
|
import string |
|
from nltk.stem.wordnet import WordNetLemmatizer |
|
import gradio as gr |
|
import inflect |
|
from sklearn.metrics import silhouette_score |
|
from xml.etree import ElementTree as ET |
|
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
p = inflect.engine() |
|
nlp = en_core_sci_lg.load() |
|
sp = en_core_sci_lg.load() |
|
all_stopwords = sp.Defaults.stop_words |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
def remove_stopwords(sen): |
|
sen_new = " ".join([i for i in sen if i not in stop_words]) |
|
return sen_new |
|
|
|
|
|
NLI_MODEL_NAME = "pritamdeka/PubMedBERT-MNLI-MedNLI" |
|
nli_tokenizer = AutoTokenizer.from_pretrained(NLI_MODEL_NAME) |
|
nli_model = AutoModelForSequenceClassification.from_pretrained(NLI_MODEL_NAME) |
|
NLI_LABELS = ['CONTRADICTION', 'NEUTRAL', 'ENTAILMENT'] |
|
|
|
def extract_evidence_sentences(claim, abstracts): |
|
results = [] |
|
for title, abstract in zip(abstracts['Title'], abstracts['Abstract']): |
|
sentences = sent_tokenize(abstract) |
|
evidence = [] |
|
for sent in sentences: |
|
|
|
encoding = nli_tokenizer( |
|
sent, claim, |
|
return_tensors='pt', |
|
truncation=True, |
|
max_length=256, |
|
padding=True |
|
) |
|
with torch.no_grad(): |
|
outputs = nli_model(**encoding) |
|
probs = torch.softmax(outputs.logits, dim=1).cpu().numpy().flatten() |
|
max_idx = probs.argmax() |
|
label = NLI_LABELS[max_idx] |
|
score = float(probs[max_idx]) |
|
evidence.append({ |
|
"sentence": sent, |
|
"label": label, |
|
"score": score |
|
}) |
|
results.append({ |
|
"title": title, |
|
"evidence": evidence |
|
}) |
|
return results |
|
|
|
def keyphrase_generator( |
|
article_link, model_1, model_2, max_num_keywords, model_3, max_retrieved, model_4, extract_evidence): |
|
|
|
|
|
try: |
|
response = requests.get(article_link, timeout=20) |
|
response.raise_for_status() |
|
html = response.text |
|
article = fulltext(html) |
|
except Exception as e: |
|
return {"error": f"Failed to download article: {str(e)}"} |
|
|
|
corpus = sent_tokenize(article) |
|
|
|
|
|
model_1 = SentenceTransformer(model_1) |
|
model_2 = SentenceTransformer(model_2) |
|
|
|
indicator_list = ['concluded', 'concludes', 'in a study', 'concluding', 'conclude', 'in sum', 'in a recent study', |
|
'therefore', 'thus', 'so', 'hence', 'as a result', 'accordingly', 'consequently', 'in short', |
|
'proves that', 'shows that', 'suggests that', 'demonstrates that', 'found that', 'observed that', |
|
'indicated that', 'suggested that', 'demonstrated that'] |
|
score_list = [] |
|
count_dict = {} |
|
for l in corpus: |
|
c = 0 |
|
for l2 in indicator_list: |
|
if l.find(l2) != -1: |
|
c = 1 |
|
break |
|
count_dict[l] = c |
|
for sent, score in count_dict.items(): |
|
score_list.append(score) |
|
clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ", regex=True).tolist() |
|
corpus_embeddings = model_1.encode(clean_sentences_new) |
|
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)]) |
|
for i in range(len(clean_sentences_new)): |
|
len_embeddings = len(corpus_embeddings[i]) |
|
for j in range(len(clean_sentences_new)): |
|
if i != j: |
|
if len_embeddings == 1024: |
|
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1, 1024), |
|
corpus_embeddings[j].reshape(1, 1024))[0, 0] |
|
elif len_embeddings == 768: |
|
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1, 768), |
|
corpus_embeddings[j].reshape(1, 768))[0, 0] |
|
nx_graph = nx.from_numpy_array(sim_mat) |
|
scores = nx.pagerank(nx_graph, max_iter=1500) |
|
sentences = ((scores[i], s) for i, s in enumerate(corpus)) |
|
element = [elem[0] for elem in sentences] |
|
sum_list = [sc + lst for sc, lst in zip(score_list, element)] |
|
x = sorted(((sum_list[i], s) for i, s in enumerate(corpus)), reverse=True) |
|
final_textrank_list = [elem[1] for elem in x] |
|
a = int((10 * len(final_textrank_list)) / 100.0) |
|
total = max(a, 5) |
|
document = [final_textrank_list[i] for i in range(total)] |
|
doc = " ".join(document) |
|
text_doc = [] |
|
for i in document: |
|
doc_1 = nlp(i) |
|
text_doc.append([X.text for X in doc_1.ents]) |
|
entity_list = [item for sublist in text_doc for item in sublist] |
|
entity_list = [word for word in entity_list if word not in all_stopwords] |
|
entity_list = [word_entity for word_entity in entity_list if not p.singular_noun(word_entity)] |
|
entity_list = list(dict.fromkeys(entity_list)) |
|
doc_embedding = model_2.encode([doc]) |
|
candidates = entity_list |
|
candidate_embeddings = model_2.encode(candidates) |
|
distances = cosine_similarity(doc_embedding, candidate_embeddings) |
|
top_n = max_num_keywords |
|
keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]] |
|
|
|
word_embedding_model = models.Transformer(model_3) |
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), |
|
pooling_mode_mean_tokens=True, |
|
pooling_mode_cls_token=False, |
|
pooling_mode_max_tokens=False) |
|
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
c_len = len(keyword_list) |
|
keyword_embeddings = embedder.encode(keyword_list) |
|
silhouette_score_list = [] |
|
cluster_list_final = [] |
|
for num_clusters in range(1, top_n): |
|
clustering_model = KMeans(n_clusters=num_clusters) |
|
clustering_model.fit(keyword_embeddings) |
|
cluster_assignment = clustering_model.labels_ |
|
clustered_sentences = [[] for _ in range(num_clusters)] |
|
for sentence_id, cluster_id in enumerate(cluster_assignment): |
|
clustered_sentences[cluster_id].append(keyword_list[sentence_id]) |
|
cl_sent_len = len(clustered_sentences) |
|
list_cluster = list(clustered_sentences) |
|
cluster_list_final.append(list_cluster) |
|
if (c_len == cl_sent_len and c_len >= 3) or cl_sent_len == 1: |
|
silhouette_avg = 0 |
|
elif c_len == cl_sent_len == 2: |
|
silhouette_avg = 1 |
|
else: |
|
silhouette_avg = silhouette_score(keyword_embeddings, cluster_assignment) |
|
silhouette_score_list.append(silhouette_avg) |
|
res_dict = dict(zip(silhouette_score_list, cluster_list_final)) |
|
cluster_items = res_dict[max(res_dict)] |
|
comb = [] |
|
for i in cluster_items: |
|
z = ' OR '.join(i) |
|
comb.append("(" + z + ")") |
|
combinations = [] |
|
for subset in itertools.combinations(comb, 2): |
|
combinations.append(subset) |
|
f1_list = [] |
|
for s in combinations: |
|
final = ' AND '.join(s) |
|
f1_list.append("(" + final + ")") |
|
f_1 = ' OR '.join(f1_list) |
|
|
|
ncbi_url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/' |
|
last_url = 'esearch.fcgi?db=pubmed' + '&term=' + f_1 |
|
overall_url = ncbi_url + last_url + '&rettype=json' + '&sort=relevance' |
|
try: |
|
pubmed_search_request = requests.get(overall_url, timeout=20) |
|
root = ET.fromstring(pubmed_search_request.text) |
|
levels = root.findall('.//Id') |
|
search_id_list = [level.text for level in levels] |
|
if not search_id_list: |
|
return {"error": "No PubMed results found."} |
|
except Exception as e: |
|
return {"error": f"Error retrieving from PubMed: {str(e)}"} |
|
all_search_ids = ','.join(search_id_list) |
|
fetch_url = 'efetch.fcgi?db=pubmed' |
|
search_id = '&id=' + all_search_ids |
|
return_url = ncbi_url + fetch_url + search_id + '&rettype=text' + '&retmode=xml' + '&retmax=500' + '&sort=relevance' |
|
try: |
|
pubmed_abstract_request = requests.get(return_url, timeout=20) |
|
root_1 = ET.fromstring(pubmed_abstract_request.text) |
|
article_title = root_1.findall('.//ArticleTitle') |
|
titles_list = [a.text for a in article_title] |
|
article_abstract = root_1.findall('.//AbstractText') |
|
abstracts_list = [b.text for b in article_abstract] |
|
except Exception as e: |
|
return {"error": f"Error extracting PubMed abstracts: {str(e)}"} |
|
if not titles_list or not abstracts_list: |
|
return {"error": "No abstracts found for this query."} |
|
|
|
try: |
|
first_article = Article(article_link, language='en') |
|
first_article.download() |
|
first_article.parse() |
|
article_heading = first_article.title |
|
if not article_heading or not isinstance(article_heading, str): |
|
article_heading = corpus[0] if corpus else "" |
|
except Exception: |
|
article_heading = corpus[0] if corpus else "" |
|
model_4 = SentenceTransformer(model_4) |
|
my_dict = dict(zip(titles_list, abstracts_list)) |
|
title_embeddings = model_4.encode(titles_list) |
|
heading_embedding = model_4.encode([article_heading]) |
|
similarities = cosine_similarity(heading_embedding, title_embeddings) |
|
max_n = max_retrieved |
|
sorted_titles = [titles_list[index] for index in similarities.argsort()[0][-max_n:]] |
|
sorted_abstract_list = [my_dict[list_elem] for list_elem in sorted_titles] |
|
sorted_dict = {'Title': sorted_titles, 'Abstract': sorted_abstract_list} |
|
|
|
|
|
if extract_evidence: |
|
evidence_results = extract_evidence_sentences( |
|
article_heading, |
|
sorted_dict, |
|
) |
|
return evidence_results |
|
else: |
|
return sorted_dict |
|
|
|
igen_pubmed = gr.Interface( |
|
keyphrase_generator, |
|
inputs=[ |
|
gr.components.Textbox(lines=1, placeholder="Provide article web link here", value="", label="Article web link"), |
|
gr.components.Dropdown( |
|
choices=[ |
|
'sentence-transformers/all-mpnet-base-v2', |
|
'sentence-transformers/all-mpnet-base-v1', |
|
'sentence-transformers/all-distilroberta-v1', |
|
'sentence-transformers/gtr-t5-large', |
|
'pritamdeka/S-Bluebert-snli-multinli-stsb', |
|
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb', |
|
'pritamdeka/S-BioBert-snli-multinli-stsb', |
|
'sentence-transformers/stsb-mpnet-base-v2', |
|
'sentence-transformers/stsb-roberta-base-v2', |
|
'sentence-transformers/stsb-distilroberta-base-v2', |
|
'sentence-transformers/sentence-t5-large', |
|
'sentence-transformers/sentence-t5-base' |
|
], |
|
type="value", |
|
value='sentence-transformers/stsb-roberta-base-v2', |
|
label="Select any SBERT model for TextRank" |
|
), |
|
gr.components.Dropdown( |
|
choices=[ |
|
'sentence-transformers/paraphrase-mpnet-base-v2', |
|
'sentence-transformers/all-mpnet-base-v1', |
|
'sentence-transformers/paraphrase-distilroberta-base-v1', |
|
'sentence-transformers/paraphrase-xlm-r-multilingual-v1', |
|
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2', |
|
'sentence-transformers/paraphrase-albert-small-v2', |
|
'sentence-transformers/paraphrase-albert-base-v2', |
|
'sentence-transformers/paraphrase-MiniLM-L12-v2', |
|
'sentence-transformers/paraphrase-MiniLM-L6-v2', |
|
'sentence-transformers/all-MiniLM-L12-v2', |
|
'sentence-transformers/all-distilroberta-v1', |
|
'sentence-transformers/paraphrase-TinyBERT-L6-v2', |
|
'sentence-transformers/paraphrase-MiniLM-L3-v2', |
|
'sentence-transformers/all-MiniLM-L6-v2' |
|
], |
|
type="value", |
|
value='sentence-transformers/all-mpnet-base-v1', |
|
label="Select any SBERT model for keyphrases" |
|
), |
|
gr.components.Slider(minimum=5, maximum=20, step=1, value=10, label="Max Keywords"), |
|
gr.components.Dropdown( |
|
choices=[ |
|
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext', |
|
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext-mean-token' |
|
], |
|
type="value", |
|
value='cambridgeltl/SapBERT-from-PubMedBERT-fulltext', |
|
label="Select any SapBERT model for clustering" |
|
), |
|
gr.components.Slider(minimum=5, maximum=15, step=1, value=10, label="PubMed Max Abstracts"), |
|
gr.components.Dropdown( |
|
choices=[ |
|
'pritamdeka/S-Bluebert-snli-multinli-stsb', |
|
'pritamdeka/S-BioBert-snli-multinli-stsb', |
|
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb', |
|
'sentence-transformers/all-mpnet-base-v2' |
|
], |
|
type="value", |
|
value='sentence-transformers/all-mpnet-base-v2', |
|
label="Select any SBERT model for abstracts" |
|
), |
|
gr.components.Checkbox(label="Enable Evidence Extraction", value=True) |
|
], |
|
outputs=gr.components.JSON(label="Results (Abstracts + Evidence)"), |
|
title="PubMed Abstract Retriever", |
|
description="Retrieves relevant PubMed abstracts for an online article and optionally extracts evidence for the claim made in the article headline. Outputs JSON mapping each abstract to evidence sentences and their stance (ENTAILMENT/SUPPORT, CONTRADICTION, NEUTRAL).", |
|
examples=[ |
|
[ |
|
"https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html", |
|
'sentence-transformers/all-mpnet-base-v1', |
|
'sentence-transformers/paraphrase-MiniLM-L12-v2', |
|
10, |
|
'cambridgeltl/SapBERT-from-PubMedBERT-fulltext', |
|
15, |
|
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb', |
|
True |
|
] |
|
] |
|
) |
|
|
|
igen_pubmed.launch(share=False, server_name='0.0.0.0', show_error=True) |
|
|