Embedding-Playground / clustering.js
ping98k
Refactor balanced K-Means implementation; update beta parameter default value, handle empty embeddings, and ensure proper centroid updates. Enhance UI to include beta input and adjust event handler to read beta value for clustering.
65b6e6f
import { UMAP } from "https://cdn.jsdelivr.net/npm/umap-js@1.4.0/+esm";
function balancedKMeans(emb, k, beta = 0.01, maxIter = 100) {
if (!emb.length) return { labels: [], centroids: [] };
const n = emb.length, d = emb[0].length;
k = Math.max(2, Math.min(k, n)); // guard k ≤ n
let cent = kmeansPlusPlusInit(emb, k);
const lab = new Uint32Array(n).fill(k); // start “unassigned”
const cnt = new Uint32Array(k);
for (let iter = 0; iter < maxIter; ++iter) {
let moved = false;
cnt.fill(0);
// ── assignment with size penalty ──
for (let i = 0; i < n; ++i) {
let best = 0, bestCost = Infinity;
for (let c = 0; c < k; ++c) {
let dist = 0;
for (let j = 0; j < d; ++j) {
const diff = emb[i][j] - cent[c][j];
dist += diff * diff;
}
const sizePenalty = beta * (2 * cnt[c] + 1);
const cost = dist + sizePenalty;
if (cost < bestCost) { bestCost = cost; best = c; }
}
if (lab[i] !== best) { lab[i] = best; moved = true; }
cnt[best]++;
}
// ── update centroids ──
cent = Array.from({ length: k }, () => new Array(d).fill(0));
for (let i = 0; i < n; ++i)
for (let j = 0; j < d; ++j) cent[lab[i]][j] += emb[i][j];
for (let c = 0; c < k; ++c)
if (cnt[c]) {
const inv = 1 / cnt[c];
for (let j = 0; j < d; ++j) cent[c][j] *= inv;
}
if (!moved) break; // converged
}
return { labels: Array.from(lab), centroids: cent };
}
function kmeansPlusPlusInit(embeddings, k) {
const n = embeddings.length;
const dim = embeddings[0].length;
const centroids = [embeddings[Math.floor(Math.random() * n)].slice()];
const d2 = new Float64Array(n);
for (let c = 1; c < k; ++c) {
let total = 0;
for (let i = 0; i < n; ++i) {
let dist = 0;
for (let d = 0; d < dim; ++d) {
const diff = embeddings[i][d] - centroids[c - 1][d];
dist += diff * diff;
}
if (c === 1 || dist < d2[i]) d2[i] = dist;
total += d2[i];
}
let r = Math.random() * total;
let idx = 0;
while (r > d2[idx]) r -= d2[idx++];
centroids.push(embeddings[idx].slice());
}
return centroids;
}
export function kmeans(embeddings, k, maxIter = 100) {
const n = embeddings.length;
if (n === 0) return { labels: [], centroids: [] };
k = Math.max(2, Math.min(k, n));
const dim = embeddings[0].length;
let centroids = kmeansPlusPlusInit(embeddings, k);
const labels = new Uint32Array(n);
const reseed = () => {
let farIdx = 0;
let farDist = -1;
for (let i = 0; i < n; ++i) {
let min = Infinity;
for (let c = 0; c < k; ++c) {
let dist = 0;
for (let d = 0; d < dim; ++d) {
const diff = embeddings[i][d] - centroids[c][d];
dist += diff * diff;
}
if (dist < min) min = dist;
}
if (min > farDist) {
farDist = min;
farIdx = i;
}
}
return embeddings[farIdx].slice();
};
for (let iter = 0; iter < maxIter; ++iter) {
let moved = false;
for (let i = 0; i < n; ++i) {
let best = 0;
let bestDist = Infinity;
for (let c = 0; c < k; ++c) {
let dist = 0;
for (let d = 0; d < dim; ++d) {
const diff = embeddings[i][d] - centroids[c][d];
dist += diff * diff;
}
if (dist < bestDist) {
bestDist = dist;
best = c;
}
}
if (labels[i] !== best) {
labels[i] = best;
moved = true;
}
}
const counts = new Uint32Array(k);
centroids = Array.from({ length: k }, () => new Array(dim).fill(0));
for (let i = 0; i < n; ++i) {
counts[labels[i]]++;
for (let d = 0; d < dim; ++d)
centroids[labels[i]][d] += embeddings[i][d];
}
for (let c = 0; c < k; ++c) {
if (counts[c] === 0) {
centroids[c] = reseed();
} else {
const inv = 1 / counts[c];
for (let d = 0; d < dim; ++d) centroids[c][d] *= inv;
}
}
if (!moved) break;
}
return { labels: Array.from(labels), centroids };
}
export function runUMAP(embeddings, nNeighbors = 15) {
const umap = new UMAP({
nComponents: 2,
nNeighbors: Math.max(1, Math.min(nNeighbors, embeddings.length - 1)),
minDist: 0.1
});
return umap.fit(embeddings);
}
export { balancedKMeans };