Spaces:
Runtime error
Runtime error
Create create_database.py
Browse files- create_database.py +24 -0
create_database.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
2 |
+
from langchain.vectorstores import Chroma
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
import json
|
5 |
+
|
6 |
+
def create_vector_database(input_path, persist_directory):
|
7 |
+
# Load preprocessed data
|
8 |
+
with open(input_path, "r") as f:
|
9 |
+
docs = json.load(f)
|
10 |
+
|
11 |
+
# Load an embedding model
|
12 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
13 |
+
|
14 |
+
# Split text into smaller chunks
|
15 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
16 |
+
all_texts = [chunk for doc in docs for chunk in text_splitter.split_text(doc["content"])]
|
17 |
+
|
18 |
+
# Create a ChromaDB vector store
|
19 |
+
vector_db = Chroma.from_texts(texts=all_texts, embedding=embedding_model, persist_directory=persist_directory)
|
20 |
+
|
21 |
+
print("Vector database created successfully!")
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
create_vector_database("preprocessed_data.json", "db") # Change paths as needed
|