File size: 1,370 Bytes
1232f3f
 
 
 
 
 
 
 
33a9225
 
1232f3f
33a9225
1232f3f
 
 
 
33a9225
1232f3f
33a9225
1232f3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
from langchain.chains import RetrievalQA
from langchain.llms import DeepseekLLM  # Or your preferred LLM
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
import os
import preprocess  # Import the preprocess module
import create_database  # Import the create_database module


# --- Preprocessing and Database Creation ---

# Preprocess data if not already done
if not os.path.exists("db"):  # Check if database exists
    preprocess.preprocess_and_save("./documents", "preprocessed_data.json")  # Update path
    create_database.create_vector_database("preprocessed_data.json", "db")

# --- RAG Pipeline ---

# Load the vector database
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector_db = Chroma(persist_directory="db", embedding_function=embedding_model)
retriever = vector_db.as_retriever(search_kwargs={"k": 3})

# Load your LLM
llm = DeepseekLLM(model_name="deepseek-ai/deepseek-coder-7b-instruct")  # Update if needed

# Create the RetrievalQA chain
qa_chain = RetrievalQA(llm=llm, retriever=retriever)

# --- Gradio Interface ---

def chatbot_interface(question):
    return qa_chain.run(question)

iface = gr.Interface(
    fn=chatbot_interface,
    inputs="text",
    outputs="text",
    title="Dubai Legislation AI Chatbot"
)

iface.launch()