addit / app.py
YoadTew's picture
mcp=true
a55a22b
#!/usr/bin/env python3
# Copyright (C) 2025 NVIDIA Corporation. All rights reserved.
#
# This work is licensed under the LICENSE file
# located at the root directory.
import os
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import tempfile
import gc
from datetime import datetime
from sam2.sam2_image_predictor import SAM2ImagePredictor
from addit_flux_pipeline import AdditFluxPipeline
from addit_flux_transformer import AdditFluxTransformer2DModel
from addit_scheduler import AdditFlowMatchEulerDiscreteScheduler
from addit_methods import add_object_generated, add_object_real
# Global variables for model
pipe = None
device = None
original_image_size = None
# Initialize model at startup
print("Initializing ADDIT model...")
try:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load transformer
my_transformer = AdditFluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
# Load pipeline
pipe = AdditFluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=my_transformer,
torch_dtype=torch.bfloat16
).to(device)
# Set scheduler
pipe.scheduler = AdditFlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
print("Model initialized successfully!")
print("Initialization SAM model:")
sam = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
except Exception as e:
print(f"Error initializing model: {str(e)}")
print("The application will start but model functionality will be unavailable.")
def validate_inputs(prompt_source, prompt_target, subject_token):
"""Validate user inputs"""
if not prompt_source.strip():
return "Source prompt cannot be empty"
if not prompt_target.strip():
return "Target prompt cannot be empty"
if not subject_token.strip():
return "Subject token cannot be empty"
if subject_token not in prompt_target:
return f"Subject token '{subject_token}' must appear in the target prompt"
return None
def resize_and_crop_image(image):
"""
Resize and center crop image to 1024x1024.
Returns the processed image, a message about what was done, and original size info.
"""
if image is None:
return None, "", None
original_width, original_height = image.size
original_size = (original_width, original_height)
# If already 1024x1024, no processing needed
if original_width == 1024 and original_height == 1024:
return image, "", original_size
# Calculate scaling to make smaller dimension 1024
scale = 1024 / min(original_width, original_height)
new_width = int(original_width * scale)
new_height = int(original_height * scale)
# Resize image
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Center crop to 1024x1024
left = (new_width - 1024) // 2
top = (new_height - 1024) // 2
right = left + 1024
bottom = top + 1024
cropped_image = resized_image.crop((left, top, right, bottom))
# Create status message
if new_width == 1024 and new_height == 1024:
message = f"<div style='background-color: #e8f5e8; border: 1px solid #4caf50; border-radius: 5px; padding: 8px; margin-bottom: 10px;'><span style='color: #2e7d32; font-weight: bold;'>✅ Image resized to 1024×1024</span></div>"
else:
message = f"<div style='background-color: #e8f5e8; border: 1px solid #4caf50; border-radius: 5px; padding: 8px; margin-bottom: 10px;'><span style='color: #2e7d32; font-weight: bold;'>✅ Image resized and center cropped to 1024×1024</span></div>"
return cropped_image, message, original_size
def handle_image_upload(image):
"""
Handle image upload and preprocessing for the Gradio interface.
This function is called when a user uploads an image to the real images tab.
It stores the original image size globally and processes the image to the required dimensions.
Args:
image: PIL.Image object uploaded by the user, or None if no image is uploaded.
Returns:
Tuple containing:
- processed_image: PIL.Image object resized and cropped to 1024x1024, or None if no image.
- message: HTML-formatted string indicating the processing status, or empty string.
"""
global original_image_size
if image is None:
original_image_size = None
return None, ""
# Store original size
original_image_size = image.size
# Process image
processed_image, message, _ = resize_and_crop_image(image)
return processed_image, message
@spaces.GPU
def process_generated_image(
prompt_source,
prompt_target,
subject_token,
seed_src,
seed_obj,
extended_scale,
structure_transfer_step,
blend_steps,
localization_model,
progress=gr.Progress(track_tqdm=True)
):
"""
Process and generate images using ADDIT for the generated images workflow.
This function generates a source image from a text prompt and then adds an object to it
based on the target prompt and subject token using the ADDIT pipeline.
Args:
prompt_source: String describing the source scene without the object to be added.
prompt_target: String describing the target scene including the object to be added.
subject_token: String token representing the object to add (must appear in target prompt).
seed_src: Integer seed for generating the source image.
seed_obj: Integer seed for generating the object.
extended_scale: Float value (1.0-1.3) controlling the extended attention scale.
structure_transfer_step: Integer (0-10) controlling structure transfer strength.
blend_steps: String of comma-separated integers for blending steps, or empty string.
localization_model: String specifying the localization model to use.
progress: Gradio progress tracker for displaying progress updates.
Returns:
Tuple containing:
- src_image: PIL.Image of the generated source image, or None if error.
- edited_image: PIL.Image with the added object, or None if error.
- status_message: String describing the result or error message.
"""
global pipe
if pipe is None:
return None, None, "Model not initialized. Please restart the application."
# Validate inputs
error_msg = validate_inputs(prompt_source, prompt_target, subject_token)
if error_msg:
return None, None, error_msg
# Print current time and input information
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f"\n[{current_time}] Starting Generated Image Processing")
print(f"Source Prompt: '{prompt_source}'")
print(f"Target Prompt: '{prompt_target}'")
print(f"Subject Token: '{subject_token}'")
print(f"Source Seed: {seed_src}, Object Seed: {seed_obj}")
print(f"Extended Scale: {extended_scale}, Structure Transfer Step: {structure_transfer_step}")
print(f"Blend Steps: '{blend_steps}', Localization Model: '{localization_model}'")
try:
# Parse blend steps
if blend_steps.strip():
blend_steps_list = [int(x.strip()) for x in blend_steps.split(',') if x.strip()]
else:
blend_steps_list = []
# Generate images
src_image, edited_image = add_object_generated(
pipe=pipe,
prompt_source=prompt_source,
prompt_object=prompt_target,
subject_token=subject_token,
seed_src=seed_src,
seed_obj=seed_obj,
show_attention=False,
extended_scale=extended_scale,
structure_transfer_step=structure_transfer_step,
blend_steps=blend_steps_list,
localization_model=localization_model,
display_output=False
)
return src_image, edited_image, "Images generated successfully!"
except Exception as e:
error_msg = f"Error generating images: {str(e)}"
print(error_msg)
return None, None, error_msg
@spaces.GPU
def process_real_image(
source_image,
prompt_source,
prompt_target,
subject_token,
seed_src,
seed_obj,
extended_scale,
structure_transfer_step,
blend_steps,
localization_model,
use_offset,
disable_inversion,
progress=gr.Progress(track_tqdm=True)
):
"""
Process and edit a real uploaded image using ADDIT to add objects.
This function takes an uploaded image and adds an object to it based on the target prompt
and subject token using the ADDIT pipeline with optional inversion and offset techniques.
Args:
source_image: PIL.Image object of the uploaded source image to edit.
prompt_source: String describing the source image content.
prompt_target: String describing the desired result including the object to add.
subject_token: String token representing the object to add (must appear in target prompt).
seed_src: Integer seed for source image processing.
seed_obj: Integer seed for object generation.
extended_scale: Float value (1.0-1.3) controlling the extended attention scale.
structure_transfer_step: Integer (0-10) controlling structure transfer strength.
blend_steps: String of comma-separated integers for blending steps, or empty string.
localization_model: String specifying the localization model to use.
use_offset: Boolean indicating whether to use offset technique.
disable_inversion: Boolean indicating whether to disable DDIM inversion.
progress: Gradio progress tracker for displaying progress updates.
Returns:
Tuple containing:
- src_image: PIL.Image of the processed source image, or None if error.
- edited_image: PIL.Image with the added object, or None if error.
- status_message: String describing the result or error message.
"""
global pipe
if pipe is None:
return None, None, "Model not initialized. Please restart the application."
if source_image is None:
return None, None, "Please upload a source image"
# Validate inputs
error_msg = validate_inputs(prompt_source, prompt_target, subject_token)
if error_msg:
return None, None, error_msg
# Print current time and input information
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f"\n[{current_time}] Starting Real Image Processing")
if original_image_size:
print(f"Original uploaded image size: {original_image_size[0]}×{original_image_size[1]}")
print(f"Source Image Size: {source_image.size}")
print(f"Source Prompt: '{prompt_source}'")
print(f"Target Prompt: '{prompt_target}'")
print(f"Subject Token: '{subject_token}'")
print(f"Source Seed: {seed_src}, Object Seed: {seed_obj}")
print(f"Extended Scale: {extended_scale}, Structure Transfer Step: {structure_transfer_step}")
print(f"Blend Steps: '{blend_steps}', Localization Model: '{localization_model}'")
print(f"Use Offset: {use_offset}, Disable Inversion: {disable_inversion}")
try:
# Resize source image
source_image = source_image.resize((1024, 1024))
# Parse blend steps
if blend_steps.strip():
blend_steps_list = [int(x.strip()) for x in blend_steps.split(',') if x.strip()]
else:
blend_steps_list = []
# Process image
src_image, edited_image = add_object_real(
pipe=pipe,
source_image=source_image,
prompt_source=prompt_source,
prompt_object=prompt_target,
subject_token=subject_token,
seed_src=seed_src,
seed_obj=seed_obj,
extended_scale=extended_scale,
structure_transfer_step=structure_transfer_step,
blend_steps=blend_steps_list,
localization_model=localization_model,
use_offset=use_offset,
show_attention=False,
use_inversion=not disable_inversion,
display_output=False
)
return src_image, edited_image, "Image edited successfully!"
except Exception as e:
error_msg = f"Error processing image: {str(e)}"
print(error_msg)
return None, None, error_msg
def create_interface():
"""Create the Gradio interface"""
# Show model status in the interface
model_status = "Model ready!" if pipe is not None else "Model initialization failed - functionality unavailable"
with gr.Blocks(title="🎨 Add-it: Training-Free Object Insertion in Images With Pretrained Diffusion Models", theme=gr.themes.Soft()) as demo:
gr.HTML(f"""
<div style="text-align: center; margin-bottom: 20px;">
<h1>🎨 Add-it: Training-Free Object Insertion</h1>
<p>Add objects to images using pretrained diffusion models</p>
<p><a href="https://research.nvidia.com/labs/par/addit/" target="_blank">🌐 Project Website</a> |
<a href="https://arxiv.org/abs/2411.07232" target="_blank">📄 Paper</a> |
<a href="https://github.com/NVlabs/addit" target="_blank">💻 Code</a></p>
<p style="color: {'green' if pipe is not None else 'red'}; font-weight: bold;">Status: {model_status}</p>
</div>
""")
# Main interface
with gr.Tabs():
# Generated Images Tab
with gr.TabItem("🎭 Generated Images"):
gr.Markdown("### Generate a base image and add objects to it")
with gr.Row():
with gr.Column(scale=1):
gen_prompt_source = gr.Textbox(
label="Source Prompt",
placeholder="A photo of a cat sitting on the couch",
value="A photo of a cat sitting on the couch"
)
gen_prompt_target = gr.Textbox(
label="Target Prompt",
placeholder="A photo of a cat wearing a blue hat sitting on the couch",
value="A photo of a cat wearing a blue hat sitting on the couch"
)
gen_subject_token = gr.Textbox(
label="Subject Token",
placeholder="hat",
value="hat",
info="Single token representing the object to add **(must appear in target prompt)**"
)
with gr.Accordion("Advanced Settings", open=False):
gen_seed_src = gr.Number(label="Source Seed", value=1, precision=0)
gen_seed_obj = gr.Number(label="Object Seed", value=42, precision=0)
gen_extended_scale = gr.Slider(
label="Extended Scale",
minimum=1.0,
maximum=1.3,
value=1.05,
step=0.01
)
gen_structure_transfer_step = gr.Slider(
label="Structure Transfer Step",
minimum=0,
maximum=10,
value=2,
step=1
)
gen_blend_steps = gr.Textbox(
label="Blend Steps",
value="15",
info="Comma-separated list of steps (e.g., '15,20') or empty for no blending"
)
gen_localization_model = gr.Dropdown(
label="Localization Model",
choices=[
"attention_points_sam",
"attention",
"attention_box_sam",
"attention_mask_sam",
"grounding_sam"
],
value="attention_points_sam"
)
gen_submit_btn = gr.Button("🎨 Generate & Edit", variant="primary")
with gr.Column(scale=2):
with gr.Row():
gen_src_output = gr.Image(label="Generated Source Image", type="pil")
gen_edited_output = gr.Image(label="Edited Image", type="pil")
gen_status = gr.Textbox(label="Status", interactive=False)
gen_submit_btn.click(
fn=process_generated_image,
inputs=[
gen_prompt_source, gen_prompt_target, gen_subject_token,
gen_seed_src, gen_seed_obj, gen_extended_scale,
gen_structure_transfer_step, gen_blend_steps,
gen_localization_model
],
outputs=[gen_src_output, gen_edited_output, gen_status]
)
# Examples for generated images
gr.Examples(
examples=[
["An empty throne", "A king sitting on a throne", "king"],
["A photo of a man sitting on a bench", "A photo of a man sitting on a bench with a dog", "dog"],
["A photo of a cat sitting on the couch", "A photo of a cat wearing a blue hat sitting on the couch", "hat"],
["A car driving through an empty street", "A pink car driving through an empty street", "car"]
],
inputs=[
gen_prompt_source, gen_prompt_target, gen_subject_token
],
label="Example Prompts"
)
# Real Images Tab
with gr.TabItem("📸 Real Images"):
gr.Markdown("### Upload an image and add objects to it")
gr.HTML("<p style='color: orange; font-weight: bold; margin: -15px -10px;'>Note: Images will be automatically resized and center cropped to 1024×1024 pixels.</p>")
with gr.Row():
with gr.Column(scale=1):
real_image_status = gr.HTML(visible=False)
real_source_image = gr.Image(label="Source Image", type="pil")
real_prompt_source = gr.Textbox(
label="Source Prompt",
placeholder="A photo of a bed in a dark room",
value="A photo of a bed in a dark room"
)
real_prompt_target = gr.Textbox(
label="Target Prompt",
placeholder="A photo of a dog lying on a bed in a dark room",
value="A photo of a dog lying on a bed in a dark room"
)
real_subject_token = gr.Textbox(
label="Subject Token",
placeholder="dog",
value="dog",
info="Single token representing the object to add **(must appear in target prompt)**"
)
with gr.Accordion("Advanced Settings", open=False):
real_seed_src = gr.Number(label="Source Seed", value=1, precision=0)
real_seed_obj = gr.Number(label="Object Seed", value=0, precision=0)
real_extended_scale = gr.Slider(
label="Extended Scale",
minimum=1.0,
maximum=1.3,
value=1.1,
step=0.01
)
real_structure_transfer_step = gr.Slider(
label="Structure Transfer Step",
minimum=0,
maximum=10,
value=4,
step=1
)
real_blend_steps = gr.Textbox(
label="Blend Steps",
value="18",
info="Comma-separated list of steps (e.g., '15,20') or empty for no blending"
)
real_localization_model = gr.Dropdown(
label="Localization Model",
choices=[
"attention",
"attention_points_sam",
"attention_box_sam",
"attention_mask_sam",
"grounding_sam"
],
value="attention"
)
real_use_offset = gr.Checkbox(label="Use Offset", value=False)
real_disable_inversion = gr.Checkbox(label="Disable Inversion", value=False)
real_submit_btn = gr.Button("🎨 Edit Image", variant="primary")
with gr.Column(scale=2):
with gr.Row():
real_src_output = gr.Image(label="Source Image", type="pil")
real_edited_output = gr.Image(label="Edited Image", type="pil")
real_status = gr.Textbox(label="Status", interactive=False)
# Handle image upload and preprocessing
real_source_image.upload(
fn=handle_image_upload,
inputs=[real_source_image],
outputs=[real_source_image, real_image_status]
).then(
fn=lambda status: gr.update(visible=bool(status.strip()), value=status),
inputs=[real_image_status],
outputs=[real_image_status]
)
real_submit_btn.click(
fn=process_real_image,
inputs=[
real_source_image, real_prompt_source, real_prompt_target, real_subject_token,
real_seed_src, real_seed_obj, real_extended_scale,
real_structure_transfer_step, real_blend_steps,
real_localization_model, real_use_offset,
real_disable_inversion
],
outputs=[real_src_output, real_edited_output, real_status]
)
# Examples for real images
gr.Examples(
examples=[
[
"images/bed_dark_room.jpg",
"A photo of a bed in a dark room",
"A photo of a dog lying on a bed in a dark room",
"dog"
],
[
"images/flower.jpg",
"A photo of a flower",
"A bee standing on a flower",
"bee"
]
],
inputs=[
real_source_image, real_prompt_source, real_prompt_target, real_subject_token
],
label="Example Images & Prompts"
)
# Tips
with gr.Accordion("💡 Tips for Better Results", open=False):
gr.Markdown("""
- **Prompt Design**: The Target Prompt should be similar to the Source Prompt, but include a description of the new object to insert
- **Seed Variation**: Try different values for Object Seed - some prompts may require a few attempts to get satisfying results
- **Localization Models**: The most effective options are `attention_points_sam` and `attention`. Use Show Attention to visualize localization performance
- **Object Placement Issues**: If the object is not added to the image:
- Try **decreasing** Structure Transfer Step
- Try **increasing** Extended Scale
- **Flexibility**: To allow more flexibility in modifying the source image, leave Blend Steps empty to send an empty list
""")
return demo
demo = create_interface()
# demo.launch(
# server_name="0.0.0.0",
# server_port=7860,
# share=True,
# mcp_server=False
# )
demo.launch(mcp_server=True)