Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# Copyright (C) 2025 NVIDIA Corporation. All rights reserved. | |
# | |
# This work is licensed under the LICENSE file | |
# located at the root directory. | |
from tqdm import tqdm | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import torch | |
import numpy as np | |
from PIL import Image | |
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, calculate_shift, retrieve_timesteps | |
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.utils.torch_utils import randn_tensor | |
import matplotlib.pyplot as plt | |
import torch.fft | |
import torch.nn.functional as F | |
from diffusers.models.attention_processor import FluxAttnProcessor2_0, FluxSingleAttnProcessor2_0 | |
from addit_attention_processors import AdditFluxAttnProcessor2_0, AdditFluxSingleAttnProcessor2_0 | |
from addit_attention_store import AttentionStore | |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation | |
from skimage import filters | |
from visualization_utils import show_image_and_heatmap, show_images, draw_points_on_pil_image, draw_bboxes_on_image | |
from addit_blending_utils import clipseg_predict, grounding_sam_predict, mask_to_box_sam_predict, \ | |
mask_to_mask_sam_predict, attention_to_points_sam_predict | |
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
from scipy.optimize import brentq | |
from scipy.optimize import root_scalar | |
def register_my_attention_processors(transformer, attention_store, extended_steps_multi, extended_steps_single): | |
attn_procs = {} | |
for i, (name, processor) in enumerate(transformer.attn_processors.items()): | |
layer_name = ".".join(name.split(".")[:2]) | |
if layer_name.startswith("transformer_blocks"): | |
attn_procs[name] = AdditFluxAttnProcessor2_0(layer_name=layer_name, | |
attention_store=attention_store, | |
extended_steps=extended_steps_multi) | |
elif layer_name.startswith("single_transformer_blocks"): | |
attn_procs[name] = AdditFluxSingleAttnProcessor2_0(layer_name=layer_name, | |
attention_store=attention_store, | |
extended_steps=extended_steps_single) | |
transformer.set_attn_processor(attn_procs) | |
def register_regular_attention_processors(transformer): | |
attn_procs = {} | |
for i, (name, processor) in enumerate(transformer.attn_processors.items()): | |
layer_name = ".".join(name.split(".")[:2]) | |
if layer_name.startswith("transformer_blocks"): | |
attn_procs[name] = FluxAttnProcessor2_0() | |
elif layer_name.startswith("single_transformer_blocks"): | |
attn_procs[name] = FluxSingleAttnProcessor2_0() | |
transformer.set_attn_processor(attn_procs) | |
def img2img_retrieve_latents( | |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
): | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
class AdditFluxPipeline(FluxPipeline): | |
def prepare_latents( | |
self, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
height = 2 * (int(height) // self.vae_scale_factor) | |
width = 2 * (int(width) // self.vae_scale_factor) | |
shape = (batch_size, num_channels_latents, height, width) | |
if latents is not None: | |
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) | |
return latents.to(device=device, dtype=dtype), latent_image_ids | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if isinstance(generator, list): | |
latents = torch.empty(shape, device=device, dtype=dtype) | |
latents_list = [randn_tensor(shape, generator=g, device=device, dtype=dtype) for g in generator] | |
for i, l_i in enumerate(latents_list): | |
latents[i] = l_i[i] | |
else: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) | |
return latents, latent_image_ids | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 28, | |
timesteps: List[int] = None, | |
guidance_scale: Union[float, List[float]] = 7.0, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
seed: Optional[Union[int, List[int]]] = None, | |
same_latent_for_all_prompts: bool = False, | |
# Extended Attention | |
extended_steps_multi: Optional[int] = -1, | |
extended_steps_single: Optional[int] = -1, | |
extended_scale: Optional[Union[float, str]] = 1.0, | |
# Structure Transfer | |
source_latents: Optional[torch.FloatTensor] = None, | |
structure_transfer_step: int = 5, | |
# Latent Blending | |
subject_token: Optional[str] = None, | |
localization_model: Optional[str] = "attention_points_sam", | |
blend_steps: List[int] = [], | |
show_attention: bool = False, | |
# Real Image Source | |
is_img_src: bool = False, | |
use_offset: bool = False, | |
img_src_latents: Optional[List[torch.FloatTensor]] = None, | |
# TQDM | |
tqdm_desc: str = "Denoising", | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
will be used instead | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
Examples: | |
Returns: | |
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
images. | |
""" | |
device = self._execution_device | |
# Blend Steps | |
blend_models = {} | |
if len(blend_steps) > 0: | |
if localization_model == "clipseg": | |
blend_models["clipseg_processor"] = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
blend_models["clipseg_model"] = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) | |
elif localization_model == "grounding_sam": | |
grounding_dino_model_id = "IDEA-Research/grounding-dino-base" | |
blend_models["grounding_processor"] = AutoProcessor.from_pretrained(grounding_dino_model_id) | |
blend_models["grounding_model"] = AutoModelForZeroShotObjectDetection.from_pretrained(grounding_dino_model_id).to(device) | |
blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") | |
elif localization_model == "clipseg_sam": | |
blend_models["clipseg_processor"] = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
blend_models["clipseg_model"] = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) | |
blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") | |
elif localization_model == "attention": | |
pass | |
elif localization_model in ["attention_box_sam", "attention_mask_sam", "attention_points_sam"]: | |
blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale | |
self._joint_attention_kwargs = joint_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
lora_scale = ( | |
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
pooled_prompt_embeds, | |
text_ids, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
# 4. Prepare latent variables | |
if (generator is None) and seed is not None: | |
if isinstance(seed, int): | |
generator = torch.Generator(device=device).manual_seed(seed) | |
else: | |
assert len(seed) == batch_size, "The number of seeds must match the batch size" | |
generator = [torch.Generator(device=device).manual_seed(s) for s in seed] | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
latents, latent_image_ids = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
if same_latent_for_all_prompts: | |
latents = latents[:1].repeat(batch_size * num_images_per_prompt, 1, 1) | |
noise = latents.clone() | |
attention_store_kwargs = {} | |
if extended_scale == "auto": | |
is_auto_extend_scale = True | |
extended_scale = 1.05 | |
attention_store_kwargs["is_cache_attn_ratio"] = True | |
auto_extended_step = 5 | |
target_auto_ratio = 1.05 | |
else: | |
is_auto_extend_scale = False | |
if len(blend_steps) > 0: | |
attn_steps = range(blend_steps[0] - 2, blend_steps[0] + 1) | |
attention_store_kwargs["record_attention_steps"] = attn_steps | |
self.attention_store = AttentionStore(prompts=prompt, tokenizer=self.tokenizer_2, subject_token=subject_token, **attention_store_kwargs) | |
register_my_attention_processors(self.transformer, self.attention_store, extended_steps_multi, extended_steps_single) | |
# 5. Prepare timesteps | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
image_seq_len = latents.shape[1] | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.base_image_seq_len, | |
self.scheduler.config.max_image_seq_len, | |
self.scheduler.config.base_shift, | |
self.scheduler.config.max_shift, | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
timesteps, | |
sigmas, | |
mu=mu, | |
) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
self._num_timesteps = len(timesteps) | |
# handle guidance | |
if self.transformer.config.guidance_embeds: | |
if isinstance(guidance_scale, float): | |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
guidance = guidance.expand(latents.shape[0]) | |
elif isinstance(guidance_scale, list): | |
assert len(guidance_scale) == latents.shape[0], "The number of guidance scales must match the batch size" | |
guidance = torch.tensor(guidance_scale, device=device, dtype=torch.float32) | |
else: | |
guidance = None | |
if is_img_src and img_src_latents is None: | |
assert source_latents is not None, "source_latents must be provided when is_img_src is True" | |
rand_noise = noise[0].clone() | |
img_src_latents = [] | |
for i in range(timesteps.shape[0]): | |
sigma = self.scheduler.sigmas[i] | |
img_src_latents.append((1.0 - sigma) * source_latents[0] + sigma * rand_noise) | |
# 6. Denoising loop | |
for i, t in enumerate(tqdm(timesteps, desc=tqdm_desc)): | |
if self.interrupt: | |
continue | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
# For denoising from source image | |
if is_img_src: | |
latents[0] = img_src_latents[i] | |
# For Structure Transfer | |
if (source_latents is not None) and i == structure_transfer_step: | |
sigma = self.scheduler.sigmas[i] | |
latents[1] = (1.0 - sigma) * source_latents[0] + sigma * noise[1] | |
if is_auto_extend_scale and i == auto_extended_step: | |
def f(gamma): | |
self.attention_store.attention_ratios[i] = {} | |
noise_pred = self.transformer( | |
hidden_states=latents, | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
proccesor_kwargs={"step_index": i, "extended_scale": gamma}, | |
)[0] | |
scores_per_layer = self.attention_store.get_attention_ratios(step_indices=[i], display_imgs=False) | |
source_sum, text_sum, target_sum = scores_per_layer['transformer_blocks'] | |
# We want to find the gamma that makes the ratio equal to K | |
ratio = (target_sum / source_sum) | |
return (ratio - target_auto_ratio) | |
gamma_sol = brentq(f, 1.0, 1.2, xtol=0.01) | |
print('Chosen gamma:', gamma_sol) | |
extended_scale = gamma_sol | |
else: | |
noise_pred = self.transformer( | |
hidden_states=latents, | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
proccesor_kwargs={"step_index": i, "extended_scale": extended_scale}, | |
)[0] | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents, x0 = self.scheduler.step(noise_pred, t, latents, return_dict=False, step_index=i) | |
if use_offset and is_img_src and (i+1 < len(img_src_latents)): | |
next_latent = img_src_latents[i+1] | |
offset = (next_latent - latents[0]) | |
latents[1] = latents[1] + offset | |
# blend latents | |
if i in blend_steps and (subject_token is not None) and (localization_model is not None): | |
x0 = self._unpack_latents(x0, height, width, self.vae_scale_factor) | |
x0 = (x0 / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
images = self.vae.decode(x0, return_dict=False)[0] | |
images = self.image_processor.postprocess(images, output_type="pil") | |
self.do_step_blend(images, latents, subject_token, localization_model, show_attention, i, blend_models) | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
# if XLA_AVAILABLE: | |
# xm.mark_step() | |
if output_type == "latent": | |
image = latents | |
elif output_type == "both": | |
return_latents = latents | |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type="pil") | |
return (image, return_latents) | |
else: | |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return FluxPipelineOutput(images=image) | |
def do_step_blend(self, images, latents, subject_token, localization_model, | |
show_attention, i, blend_models): | |
device = latents.device | |
latents_dtype = latents.dtype | |
clipseg_processor = blend_models.get("clipseg_processor", None) | |
clipseg_model = blend_models.get("clipseg_model", None) | |
grounding_processor = blend_models.get("grounding_processor", None) | |
grounding_model = blend_models.get("grounding_model", None) | |
sam_predictor = blend_models.get("sam_predictor", None) | |
image_to_display = [] | |
titles_to_display = [] | |
if show_attention: | |
image_to_display += [images[0], images[1]] | |
titles_to_display += ["Source X0", "Target X0"] | |
if localization_model == "clipseg": | |
subject_mask = clipseg_predict(clipseg_model, clipseg_processor, [images[-1]], f"A photo of {subject_token}", device) | |
elif localization_model == "grounding_sam": | |
subject_mask = grounding_sam_predict(grounding_model, grounding_processor, sam_predictor, images[-1], f"A {subject_token}.", device) | |
elif localization_model == "clipseg_sam": | |
subject_mask = clipseg_predict(clipseg_model, clipseg_processor, [images[-1]], f"A photo of {subject_token}", device) | |
subject_mask = mask_to_box_sam_predict(subject_mask, sam_predictor, images[-1], None, device) | |
elif localization_model == "attention": | |
store = self.attention_store.image2text_store | |
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) | |
subject_mask = attention_masks[0][-1].to(device) | |
subject_attention = attention_maps[0][-1].to(device) | |
if show_attention: | |
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) | |
attention_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=512) | |
image_to_display += [attentioned_image, attention_masked_image] | |
titles_to_display += ["Attention", "Attention Mask"] | |
elif localization_model == "attention_box_sam": | |
store = self.attention_store.image2text_store | |
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) | |
attention_mask = attention_masks[0][-1].to(device) | |
subject_attention = attention_maps[0][-1].to(device) | |
subject_mask, bbox = mask_to_box_sam_predict(attention_mask, sam_predictor, images[-1], None, device) | |
if show_attention: | |
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) | |
attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512) | |
sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024) | |
sam_masked_image = draw_bboxes_on_image(sam_masked_image, [bbox.tolist()], color="green", thickness=5) | |
image_to_display += [attentioned_image, attention_masked_image, sam_masked_image] | |
titles_to_display += ["Attention", "Attention Mask", "SAM Mask"] | |
elif localization_model == "attention_mask_sam": | |
store = self.attention_store.image2text_store | |
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) | |
attention_mask = attention_masks[0][-1].to(device) | |
subject_attention = attention_maps[0][-1].to(device) | |
subject_mask = mask_to_mask_sam_predict(attention_mask, sam_predictor, images[-1], None, device) | |
if show_attention: | |
print('Attention:') | |
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) | |
attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512) | |
sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024) | |
image_to_display += [attentioned_image, attention_masked_image, sam_masked_image] | |
titles_to_display += ["Attention", "Attention Mask", "SAM Mask"] | |
elif localization_model == "attention_points_sam": | |
store = self.attention_store.image2text_store | |
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) | |
attention_mask = attention_masks[0][-1].to(device) | |
subject_attention = attention_maps[0][-1].to(device) | |
subject_mask, point_coords = attention_to_points_sam_predict(subject_attention, attention_mask, sam_predictor, images[1], None, device) | |
if show_attention: | |
print('Attention:') | |
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) | |
attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512) | |
sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024) | |
sam_masked_image = draw_points_on_pil_image(sam_masked_image, point_coords, point_color="green", radius=10) | |
image_to_display += [attentioned_image, attention_masked_image, sam_masked_image] | |
titles_to_display += ["Attention", "Attention Mask", "SAM Mask"] | |
if show_attention: | |
show_images(image_to_display, titles_to_display, size=512, save_path="attn_vis.png") | |
# Resize the mask to latents size | |
latents_mask = torch.nn.functional.interpolate(subject_mask.view(1,1,subject_mask.shape[-2],subject_mask.shape[-1]), size=64, mode='bilinear').view(4096, 1).to(latents_dtype) | |
latents_mask[latents_mask > 0.01] = 1 | |
latents[1] = latents[1] * latents_mask + latents[0] * (1 - latents_mask) | |
############# Image to Image Methods ############# | |
def img2img_encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
if isinstance(generator, list): | |
image_latents = [ | |
img2img_retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
for i in range(image.shape[0]) | |
] | |
image_latents = torch.cat(image_latents, dim=0) | |
else: | |
image_latents = img2img_retrieve_latents(self.vae.encode(image), generator=generator) | |
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor | |
return image_latents | |
def img2img_prepare_latents( | |
self, | |
image, | |
timestep, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
): | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
height = 2 * (int(height) // self.vae_scale_factor) | |
width = 2 * (int(width) // self.vae_scale_factor) | |
shape = (batch_size, num_channels_latents, height, width) | |
latent_image_ids = self.img2img_prepare_latent_image_ids(batch_size, height, width, device, dtype) | |
if latents is not None: | |
return latents.to(device=device, dtype=dtype), latent_image_ids | |
image = image.to(device=device, dtype=dtype) | |
image_latents = self.img2img_encode_vae_image(image=image, generator=generator) | |
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
# expand init_latents for batch_size | |
additional_image_per_prompt = batch_size // image_latents.shape[0] | |
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
image_latents = torch.cat([image_latents], dim=0) | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
latents = self.scheduler.scale_noise(image_latents, timestep, noise) | |
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
return latents, latent_image_ids | |
def img2img_check_inputs( | |
self, | |
prompt, | |
prompt_2, | |
strength, | |
height, | |
width, | |
prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
callback_on_step_end_tensor_inputs=None, | |
max_sequence_length=None, | |
): | |
if strength < 0 or strength > 1: | |
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt_2 is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
if prompt_embeds is not None and pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
) | |
if max_sequence_length is not None and max_sequence_length > 512: | |
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") | |
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps | |
def img2img_get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(num_inference_steps * strength, num_inference_steps) | |
t_start = int(max(num_inference_steps - init_timestep, 0)) | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
if hasattr(self.scheduler, "set_begin_index"): | |
self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
return timesteps, num_inference_steps - t_start | |
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids | |
def img2img_prepare_latent_image_ids(batch_size, height, width, device, dtype): | |
latent_image_ids = torch.zeros(height // 2, width // 2, 3) | |
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] | |
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] | |
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape | |
latent_image_ids = latent_image_ids.reshape( | |
latent_image_id_height * latent_image_id_width, latent_image_id_channels | |
) | |
return latent_image_ids.to(device=device, dtype=dtype) | |
def call_img2img( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
image: PipelineImageInput = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
strength: float = 0.6, | |
num_inference_steps: int = 28, | |
timesteps: List[int] = None, | |
guidance_scale: float = 7.0, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
# TQDM | |
tqdm_desc: str = "Denoising", | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
will be used instead | |
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both | |
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list | |
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a | |
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image | |
latents as `image`, but if passing latents directly it is not encoded again. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
strength (`float`, *optional*, defaults to 1.0): | |
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
essentially ignores `image`. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
Examples: | |
Returns: | |
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
images. | |
""" | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.img2img_check_inputs( | |
prompt, | |
prompt_2, | |
strength, | |
height, | |
width, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale | |
self._joint_attention_kwargs = joint_attention_kwargs | |
self._interrupt = False | |
# 2. Preprocess image | |
init_image = self.image_processor.preprocess(image, height=height, width=width) | |
init_image = init_image.to(dtype=torch.float32) | |
# 3. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
lora_scale = ( | |
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
pooled_prompt_embeds, | |
text_ids, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
register_regular_attention_processors(self.transformer) | |
# 4.Prepare timesteps | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor) | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.base_image_seq_len, | |
self.scheduler.config.max_image_seq_len, | |
self.scheduler.config.base_shift, | |
self.scheduler.config.max_shift, | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
timesteps, | |
sigmas, | |
mu=mu, | |
) | |
timesteps, num_inference_steps = self.img2img_get_timesteps(num_inference_steps, strength, device) | |
if num_inference_steps < 1: | |
raise ValueError( | |
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" | |
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." | |
) | |
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
# 5. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
latents, latent_image_ids = self.img2img_prepare_latents( | |
init_image, | |
latent_timestep, | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
self._num_timesteps = len(timesteps) | |
# handle guidance | |
if self.transformer.config.guidance_embeds: | |
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
guidance = guidance.expand(latents.shape[0]) | |
else: | |
guidance = None | |
text_ids = text_ids.expand(latents.shape[0], -1, -1) | |
latent_image_ids = latent_image_ids.expand(latents.shape[0], -1, -1) | |
# 6. Denoising loop | |
for i, t in enumerate(tqdm(timesteps, desc=tqdm_desc)): | |
if self.interrupt: | |
continue | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
noise_pred = self.transformer( | |
hidden_states=latents, | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
# if XLA_AVAILABLE: | |
# xm.mark_step() | |
if output_type == "latent": | |
image = latents | |
else: | |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return FluxPipelineOutput(images=image) | |
############# Invert Methods ############# | |
def invert_prepare_latents( | |
self, | |
image, | |
timestep, | |
batch_size, | |
num_channels_latents, | |
height, | |
width, | |
dtype, | |
device, | |
generator, | |
latents=None, | |
add_noise=False, | |
): | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
height = 2 * (int(height) // self.vae_scale_factor) | |
width = 2 * (int(width) // self.vae_scale_factor) | |
shape = (batch_size, num_channels_latents, height, width) | |
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) | |
if latents is not None: | |
return latents.to(device=device, dtype=dtype), latent_image_ids | |
image = image.to(device=device, dtype=dtype) | |
image_latents = self.img2img_encode_vae_image(image=image, generator=generator) | |
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
# expand init_latents for batch_size | |
additional_image_per_prompt = batch_size // image_latents.shape[0] | |
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
image_latents = torch.cat([image_latents], dim=0) | |
if add_noise: | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
latents = self.scheduler.scale_noise(image_latents, timestep, noise) | |
else: | |
latents = image_latents | |
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) | |
return latents, latent_image_ids | |
def call_invert( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
image: PipelineImageInput = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 28, | |
timesteps: List[int] = None, | |
guidance_scale: float = 7.0, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 512, | |
fixed_point_iterations: int = 1, | |
# TQDM | |
tqdm_desc: str = "Denoising", | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
will be used instead | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
joint_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. | |
Examples: | |
Returns: | |
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
images. | |
""" | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale | |
self._joint_attention_kwargs = joint_attention_kwargs | |
self._interrupt = False | |
# 1.5. Preprocess image | |
if isinstance(image, Image.Image): | |
init_image = self.image_processor.preprocess(image, height=height, width=width) | |
elif isinstance(image, torch.Tensor): | |
init_image = image | |
latents = image | |
else: | |
raise ValueError("Image must be of type `PIL.Image.Image` or `torch.Tensor`") | |
init_image = init_image.to(dtype=torch.float32) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
lora_scale = ( | |
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
pooled_prompt_embeds, | |
text_ids, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_embeds=prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
# 4. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels // 4 | |
# latents, latent_image_ids = self.prepare_latents( | |
# batch_size * num_images_per_prompt, | |
# num_channels_latents, | |
# height, | |
# width, | |
# prompt_embeds.dtype, | |
# device, | |
# generator, | |
# latents, | |
# ) | |
latents, latent_image_ids = self.invert_prepare_latents( | |
init_image, | |
None, | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
False | |
) | |
register_regular_attention_processors(self.transformer) | |
# 5. Prepare timesteps | |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
image_seq_len = latents.shape[1] | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.base_image_seq_len, | |
self.scheduler.config.max_image_seq_len, | |
self.scheduler.config.base_shift, | |
self.scheduler.config.max_shift, | |
) | |
# For Inversion, reverse the sigmas | |
# sigmas = sigmas[::-1] | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, | |
num_inference_steps, | |
device, | |
timesteps, | |
sigmas, | |
mu=mu, | |
) | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
self._num_timesteps = len(timesteps) | |
# handle guidance | |
if self.transformer.config.guidance_embeds: | |
guidance = torch.tensor([guidance_scale], device=device) | |
guidance = guidance.expand(latents.shape[0]) | |
else: | |
guidance = None | |
self.scheduler.sigmas = reversed(self.scheduler.sigmas) | |
timesteps_zero_start = reversed(torch.cat([self.scheduler.timesteps[1:], torch.tensor([0], device=device)])) | |
timesteps_one_start = reversed(self.scheduler.timesteps) | |
self.scheduler.timesteps = timesteps_zero_start | |
# self.scheduler.timesteps = timesteps_one_start | |
timesteps = self.scheduler.timesteps | |
latents_list = [] | |
latents_list.append(latents) | |
# 6. Denoising loop | |
for i, t in enumerate(tqdm(timesteps, desc=tqdm_desc)): | |
original_latents = latents.clone() | |
for j in range(fixed_point_iterations): | |
if self.interrupt: | |
continue | |
if j == 0: | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = timesteps[i].expand(latents.shape[0]).to(latents.dtype) | |
else: | |
timestep = timesteps_one_start[i].expand(latents.shape[0]).to(latents.dtype) | |
noise_pred = self.transformer( | |
hidden_states=latents, | |
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) | |
timestep=timestep / 1000, | |
guidance=guidance, | |
pooled_projections=pooled_prompt_embeds, | |
encoder_hidden_states=prompt_embeds, | |
txt_ids=text_ids, | |
img_ids=latent_image_ids, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
# noise_pred = -noise_pred | |
latents = self.scheduler.step(noise_pred, t, original_latents, return_dict=False, step_index=i)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
# if XLA_AVAILABLE: | |
# xm.mark_step() | |
latents_list.append(latents) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
return latents_list |