Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# Copyright (C) 2025 NVIDIA Corporation. All rights reserved. | |
# | |
# This work is licensed under the LICENSE file | |
# located at the root directory. | |
from collections import defaultdict | |
from diffusers.models.attention_processor import Attention, apply_rope | |
from typing import Callable, List, Optional, Tuple, Union | |
from addit_attention_store import AttentionStore | |
from visualization_utils import show_tensors | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from scipy.optimize import brentq | |
def apply_standard_attention(query, key, value, attn, attention_probs=None): | |
batch_size, attn_heads, _, head_dim = query.shape | |
# Do normal attention, to cache the attention scores | |
query = query.reshape(batch_size*attn_heads, -1, head_dim) | |
key = key.reshape(batch_size*attn_heads, -1, head_dim) | |
value = value.reshape(batch_size*attn_heads, -1, head_dim) | |
if attention_probs is None: | |
attention_probs = attn.get_attention_scores(query, key) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = hidden_states.view(batch_size, attn_heads, -1, head_dim) | |
return hidden_states, attention_probs | |
def apply_extended_attention(query, key, value, attention_store, attn, layer_name, step_index, extend_type="pixels", | |
extended_scale=1., record_attention=False): | |
batch_size = query.size(0) | |
extend_query = query[1:] | |
if extend_type == "full": | |
added_key = key[0] * extended_scale | |
added_value = value[0] | |
elif extend_type == "text": | |
added_key = key[0, :, :512] * extended_scale | |
added_value = value[0, :, :512] | |
elif extend_type == "pixels": | |
added_key = key[0, :, 512:] | |
added_value = value[0, :, 512:] | |
key[1] = key[1] * extended_scale | |
extend_key = torch.cat([added_key, key[1]], dim=1).unsqueeze(0) | |
extend_value = torch.cat([added_value, value[1]], dim=1).unsqueeze(0) | |
hidden_states_0 = F.scaled_dot_product_attention(query[:1], key[:1], value[:1], dropout_p=0.0, is_causal=False) | |
if record_attention or attention_store.is_cache_attn_ratio(step_index): | |
hidden_states_1, attention_probs_1 = apply_standard_attention(extend_query, extend_key, extend_value, attn) | |
else: | |
hidden_states_1 = F.scaled_dot_product_attention(extend_query, extend_key, extend_value, dropout_p=0.0, is_causal=False) | |
if record_attention: | |
# Store Attention | |
seq_len = attention_probs_1.size(2) - attention_probs_1.size(1) | |
self_attention_probs_1 = attention_probs_1[:,:,seq_len:] | |
attention_store.store_attention(self_attention_probs_1, layer_name, 1, attn.heads) | |
if attention_store.is_cache_attn_ratio(step_index): | |
attention_store.store_attention_ratios(attention_probs_1, step_index, layer_name) | |
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=0) | |
return hidden_states | |
def apply_attention(query, key, value, attention_store, attn, layer_name, step_index, | |
record_attention, extended_attention, extended_scale): | |
if extended_attention: | |
hidden_states = apply_extended_attention(query, key, value, attention_store, attn, layer_name, step_index, | |
extended_scale=extended_scale, | |
record_attention=record_attention) | |
else: | |
if record_attention: | |
hidden_states_0 = F.scaled_dot_product_attention(query[:1], key[:1], value[:1], dropout_p=0.0, is_causal=False) | |
hidden_states_1, attention_probs_1 = apply_standard_attention(query[1:], key[1:], value[1:], attn) | |
attention_store.store_attention(attention_probs_1, layer_name, 1, attn.heads) | |
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=0) | |
else: | |
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
return hidden_states | |
class AdditFluxAttnProcessor2_0: | |
"""Attention processor used typically in processing the SD3-like self-attention projections.""" | |
def __init__(self, layer_name: str, attention_store: AttentionStore, | |
extended_steps: Tuple[int, int] = (0, 30), **kwargs): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.layer_name = layer_name | |
self.layer_idx = int(layer_name.split(".")[-1]) | |
self.attention_store = attention_store | |
self.extended_steps = (0, extended_steps) if isinstance(extended_steps, int) else extended_steps | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: torch.FloatTensor = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
step_index: Optional[int] = None, | |
extended_scale: Optional[float] = 1.0, | |
) -> torch.FloatTensor: | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
context_input_ndim = encoder_hidden_states.ndim | |
if context_input_ndim == 4: | |
batch_size, channel, height, width = encoder_hidden_states.shape | |
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size = encoder_hidden_states.shape[0] | |
# `sample` projections. | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# `context` projections. | |
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( | |
batch_size, -1, attn.heads, head_dim | |
).transpose(1, 2) | |
if attn.norm_added_q is not None: | |
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) | |
if attn.norm_added_k is not None: | |
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) | |
# attention | |
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) | |
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) | |
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) | |
if image_rotary_emb is not None: | |
# YiYi to-do: update uising apply_rotary_emb | |
# from ..embeddings import apply_rotary_emb | |
# query = apply_rotary_emb(query, image_rotary_emb) | |
# key = apply_rotary_emb(key, image_rotary_emb) | |
query, key = apply_rope(query, key, image_rotary_emb) | |
record_attention = self.attention_store.is_record_attention(self.layer_name, step_index) | |
extend_start, extend_end = self.extended_steps | |
extended_attention = extend_start <= step_index <= extend_end | |
hidden_states = apply_attention(query, key, value, self.attention_store, attn, self.layer_name, step_index, | |
record_attention, extended_attention, extended_scale) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
encoder_hidden_states, hidden_states = ( | |
hidden_states[:, : encoder_hidden_states.shape[1]], | |
hidden_states[:, encoder_hidden_states.shape[1] :], | |
) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if context_input_ndim == 4: | |
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
return hidden_states, encoder_hidden_states | |
class AdditFluxSingleAttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self, layer_name: str, attention_store: AttentionStore, | |
extended_steps: Tuple[int, int] = (0, 30), **kwargs): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
self.layer_name = layer_name | |
self.layer_idx = int(layer_name.split(".")[-1]) | |
self.attention_store = attention_store | |
self.extended_steps = (0, extended_steps) if isinstance(extended_steps, int) else extended_steps | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
step_index: Optional[int] = None, | |
extended_scale: Optional[float] = 1.0, | |
) -> torch.Tensor: | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# Apply RoPE if needed | |
if image_rotary_emb is not None: | |
# YiYi to-do: update uising apply_rotary_emb | |
# from ..embeddings import apply_rotary_emb | |
# query = apply_rotary_emb(query, image_rotary_emb) | |
# key = apply_rotary_emb(key, image_rotary_emb) | |
query, key = apply_rope(query, key, image_rotary_emb) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
record_attention = self.attention_store.is_record_attention(self.layer_name, step_index) | |
extend_start, extend_end = self.extended_steps | |
extended_attention = extend_start <= step_index <= extend_end | |
hidden_states = apply_attention(query, key, value, self.attention_store, attn, self.layer_name, step_index, | |
record_attention, extended_attention, extended_scale) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
return hidden_states |