app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.document_loaders import DirectoryLoader
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
from langchain.chat_models import ChatOpenAI
|
6 |
+
from langchain.retrievers.multi_query import MultiQueryRetriever
|
7 |
+
import dotenv
|
8 |
+
from langchain.indexes import VectorstoreIndexCreator
|
9 |
+
from langchain.chains.question_answering import load_qa_chain
|
10 |
+
from langchain.llms import OpenAI
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from langchain.schema import AIMessage, HumanMessage, SystemMessage
|
14 |
+
import gradio as gr
|
15 |
+
|
16 |
+
dotenv.load_dotenv()
|
17 |
+
|
18 |
+
|
19 |
+
system_message = """You are the helpful assistant representing the company ecredit.
|
20 |
+
You answers should be in Greek.
|
21 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
22 |
+
Always finish your answer with "για περισσότερες πληροφορίες καλέστε στο: XXXXXXXXXXX.".
|
23 |
+
"""
|
24 |
+
|
25 |
+
prompt_template = """Use the following pieces of context to answer the question at the end.
|
26 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
27 |
+
Only answer questions that are related to the context. If it's not in the context say "Δεν γνωρίζω".
|
28 |
+
|
29 |
+
Context:
|
30 |
+
{context}
|
31 |
+
|
32 |
+
Question: {question}
|
33 |
+
Answer in Greek:
|
34 |
+
"""
|
35 |
+
PROMPT = PromptTemplate(
|
36 |
+
template=prompt_template, input_variables=["context", "question"]
|
37 |
+
)
|
38 |
+
|
39 |
+
loader = DirectoryLoader("./documents", glob="**/*.pdf", show_progress=True)
|
40 |
+
docs = loader.load()
|
41 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
42 |
+
texts = text_splitter.split_documents(docs)
|
43 |
+
|
44 |
+
embeddings = OpenAIEmbeddings()
|
45 |
+
docsearch = Chroma.from_documents(texts, embeddings).as_retriever()
|
46 |
+
chat = ChatOpenAI(temperature=0.1)
|
47 |
+
|
48 |
+
|
49 |
+
with gr.Blocks() as demo:
|
50 |
+
chatbot = gr.Chatbot()
|
51 |
+
msg = gr.Textbox()
|
52 |
+
clear = gr.ClearButton([msg, chatbot])
|
53 |
+
|
54 |
+
def respond(message, chat_history):
|
55 |
+
messages = [
|
56 |
+
SystemMessage(content=system_message),
|
57 |
+
]
|
58 |
+
|
59 |
+
result_docs = docsearch.get_relevant_documents(message)
|
60 |
+
human_message = None
|
61 |
+
human_message = HumanMessage(
|
62 |
+
content=PROMPT.format(context=result_docs[:3], question=message)
|
63 |
+
)
|
64 |
+
messages.append(human_message)
|
65 |
+
|
66 |
+
result = chat(messages)
|
67 |
+
bot_message = result.content
|
68 |
+
chat_history.append((message, bot_message))
|
69 |
+
return "", chat_history
|
70 |
+
|
71 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
72 |
+
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
demo.launch()
|