Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import os
|
2 |
-
import sys
|
3 |
from typing import List, Tuple, Optional
|
4 |
|
5 |
-
from fastapi import FastAPI
|
6 |
from pydantic import BaseModel
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from llama_cpp import Llama
|
@@ -50,10 +49,10 @@ for model_info in MODELS_INFO:
|
|
50 |
except Exception as e:
|
51 |
print(f"Error downloading {model_info['filename']}: {e}")
|
52 |
|
53 |
-
# Available model keys
|
54 |
AVAILABLE_MODELS = {
|
55 |
-
"llama": "Dolphin3.0-Llama3.2-1B-Q4_K_M.gguf",
|
56 |
"qwen": "Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf",
|
|
|
57 |
"coder": "Qwen2.5-Coder-14B-Instruct-Q6_K.gguf"
|
58 |
}
|
59 |
|
@@ -86,28 +85,40 @@ def load_model(model_key: str):
|
|
86 |
|
87 |
|
88 |
class ChatRequest(BaseModel):
|
89 |
-
message: str
|
90 |
-
history: List[Tuple[str, str]] = []
|
91 |
-
model: str = "qwen"
|
92 |
-
system_prompt: str = "You are Dolphin, a helpful AI assistant."
|
93 |
-
max_tokens: int = 1024
|
94 |
-
temperature: float = 0.7
|
95 |
-
top_p: float = 0.95
|
96 |
-
top_k: int = 40
|
97 |
-
repeat_penalty: float = 1.1
|
98 |
|
99 |
|
100 |
class ChatResponse(BaseModel):
|
101 |
response: str
|
102 |
|
103 |
|
|
|
|
|
|
|
|
|
104 |
app = FastAPI(
|
105 |
title="Dolphin 3.0 LLM API",
|
106 |
description="REST API for Dolphin 3.0 models using Llama.cpp backend.",
|
107 |
-
version="1.0"
|
|
|
|
|
108 |
)
|
109 |
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
@app.post("/chat", response_model=ChatResponse)
|
112 |
def chat(request: ChatRequest):
|
113 |
try:
|
@@ -150,11 +161,6 @@ def chat(request: ChatRequest):
|
|
150 |
raise HTTPException(status_code=500, detail=str(e))
|
151 |
|
152 |
|
153 |
-
@app.get("/")
|
154 |
-
def read_root():
|
155 |
-
return {"message": "Welcome to Dolphin 3.0 FastAPI LLM Server!"}
|
156 |
-
|
157 |
-
|
158 |
if __name__ == "__main__":
|
159 |
import uvicorn
|
160 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
|
|
1 |
import os
|
|
|
2 |
from typing import List, Tuple, Optional
|
3 |
|
4 |
+
from fastapi import FastAPI
|
5 |
from pydantic import BaseModel
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from llama_cpp import Llama
|
|
|
49 |
except Exception as e:
|
50 |
print(f"Error downloading {model_info['filename']}: {e}")
|
51 |
|
52 |
+
# Available model keys (used in API)
|
53 |
AVAILABLE_MODELS = {
|
|
|
54 |
"qwen": "Dolphin3.0-Qwen2.5-0.5B-Q6_K.gguf",
|
55 |
+
"llama": "Dolphin3.0-Llama3.2-1B-Q4_K_M.gguf",
|
56 |
"coder": "Qwen2.5-Coder-14B-Instruct-Q6_K.gguf"
|
57 |
}
|
58 |
|
|
|
85 |
|
86 |
|
87 |
class ChatRequest(BaseModel):
|
88 |
+
message: str # Required
|
89 |
+
history: Optional[List[Tuple[str, str]]] = [] # Default: empty list
|
90 |
+
model: Optional[str] = "qwen" # Default model key
|
91 |
+
system_prompt: Optional[str] = "You are Dolphin, a helpful AI assistant."
|
92 |
+
max_tokens: Optional[int] = 1024
|
93 |
+
temperature: Optional[float] = 0.7
|
94 |
+
top_p: Optional[float] = 0.95
|
95 |
+
top_k: Optional[int] = 40
|
96 |
+
repeat_penalty: Optional[float] = 1.1
|
97 |
|
98 |
|
99 |
class ChatResponse(BaseModel):
|
100 |
response: str
|
101 |
|
102 |
|
103 |
+
class ModelInfoResponse(BaseModel):
|
104 |
+
models: List[str]
|
105 |
+
|
106 |
+
|
107 |
app = FastAPI(
|
108 |
title="Dolphin 3.0 LLM API",
|
109 |
description="REST API for Dolphin 3.0 models using Llama.cpp backend.",
|
110 |
+
version="1.0",
|
111 |
+
docs_url="/docs", # Only Swagger docs
|
112 |
+
redoc_url=None # Disable ReDoc
|
113 |
)
|
114 |
|
115 |
|
116 |
+
@app.get("/models", response_model=ModelInfoResponse)
|
117 |
+
def get_available_models():
|
118 |
+
"""Returns the list of supported models."""
|
119 |
+
return {"models": list(AVAILABLE_MODELS.keys())}
|
120 |
+
|
121 |
+
|
122 |
@app.post("/chat", response_model=ChatResponse)
|
123 |
def chat(request: ChatRequest):
|
124 |
try:
|
|
|
161 |
raise HTTPException(status_code=500, detail=str(e))
|
162 |
|
163 |
|
|
|
|
|
|
|
|
|
|
|
164 |
if __name__ == "__main__":
|
165 |
import uvicorn
|
166 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|