Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.34.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: skin-scan
|
3 |
+
app_file: app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 5.34.2
|
|
|
|
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import torchvision.transforms as T
|
6 |
+
import timm
|
7 |
+
|
8 |
+
# Load model
|
9 |
+
model = timm.create_model("efficientnet_b3a", pretrained=True, num_classes=2)
|
10 |
+
model.load_state_dict(torch.load("model.pth", map_location="cpu"))
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
# Transform
|
14 |
+
transform = T.Compose([
|
15 |
+
T.Resize((224, 224)),
|
16 |
+
T.ToTensor(),
|
17 |
+
T.Normalize([0.5]*3, [0.5]*3)
|
18 |
+
])
|
19 |
+
|
20 |
+
labels = ["Benign", "Malignant"]
|
21 |
+
|
22 |
+
def predict(img):
|
23 |
+
img = transform(img).unsqueeze(0)
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(img)
|
26 |
+
probs = torch.nn.functional.softmax(outputs[0], dim=0)
|
27 |
+
return {labels[i]: float(probs[i]) for i in range(2)}
|
28 |
+
|
29 |
+
demo = gr.Interface(fn=predict,
|
30 |
+
inputs=gr.Image(type="pil"),
|
31 |
+
outputs=gr.Label(num_top_classes=2),
|
32 |
+
examples=["example1.jpg", "example2.jpg"])
|
33 |
+
|
34 |
+
demo.launch()
|
35 |
+
|