File size: 34,568 Bytes
7280c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c42f4b
7280c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c42f4b
7280c98
0c42f4b
7280c98
 
 
0c42f4b
7280c98
 
 
 
 
 
 
0c42f4b
7280c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c42f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7280c98
0c42f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7280c98
0c42f4b
 
 
 
 
 
 
 
 
7280c98
0c42f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7280c98
0c42f4b
7280c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c42f4b
 
 
7280c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c42f4b
 
7280c98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>AI Driving Simulation</title>
    <script src="https://cdn.tailwindcss.com"></script>
    <style>
        #simulationCanvas {
            background-color: #2d3748;
            border-radius: 0.5rem;
            box-shadow: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05);
        }
        
        .car {
            position: absolute;
            width: 12px;
            height: 20px;
            background-color: #3b82f6;
            border-radius: 3px;
            transform-origin: center;
        }
        
        .track-wall {
            position: absolute;
            background-color: #4a5568;
        }
        
        .checkpoint {
            position: absolute;
            background-color: rgba(74, 222, 128, 0.3);
        }
        
        .progress-bar {
            transition: width 0.3s ease;
        }
    </style>
</head>
<body class="bg-gray-900 text-white min-h-screen">
    <div class="container mx-auto px-4 py-8">
        <h1 class="text-4xl font-bold text-center mb-6 text-blue-400">AI Driving Simulation</h1>
        
        <div class="flex flex-col lg:flex-row gap-8">
            <div class="lg:w-3/4">
                <div class="relative">
                    <canvas id="simulationCanvas" width="800" height="500" class="w-full"></canvas>
                    
                    <div id="bestCarContainer" class="absolute top-4 left-4 bg-gray-800 bg-opacity-80 p-3 rounded-lg">
                        <div class="flex items-center gap-2">
                            <div class="w-4 h-4 bg-blue-500 rounded-sm"></div>
                            <span class="text-sm">Best Car</span>
                        </div>
                        <div class="mt-2 text-xs">
                            <div>Generation: <span id="generationCount">0</span></div>
                            <div>Alive: <span id="aliveCount">0</span>/<span id="populationCount">0</span></div>
                            <div>Max Fitness: <span id="maxFitness">0</span></div>
                        </div>
                    </div>
                </div>
                
                <div class="mt-4 grid grid-cols-1 md:grid-cols-3 gap-4">
                    <div class="bg-gray-800 p-4 rounded-lg">
                        <h3 class="font-semibold text-blue-300 mb-2">Simulation Controls</h3>
                        <div class="flex flex-wrap gap-2">
                            <button id="startBtn" class="bg-green-600 hover:bg-green-700 px-3 py-1 rounded text-sm">
                                Start
                            </button>
                            <button id="pauseBtn" class="bg-yellow-600 hover:bg-yellow-700 px-3 py-1 rounded text-sm">
                                Pause
                            </button>
                            <button id="resetBtn" class="bg-red-600 hover:bg-red-700 px-3 py-1 rounded text-sm">
                                New Track
                            </button>
                        </div>
                    </div>
                    
                    <div class="bg-gray-800 p-4 rounded-lg">
                        <h3 class="font-semibold text-blue-300 mb-2">AI Settings</h3>
                        <div class="space-y-2">
                            <div>
                                <label class="text-xs block">Population:</label>
                                <input type="range" id="populationSlider" min="10" max="500" value="100" class="w-full">
                                <span id="populationValue" class="text-xs">100</span>
                            </div>
                            <div>
                                <label class="text-xs block">Mutation Rate:</label>
                                <input type="range" id="mutationSlider" min="1" max="100" value="10" class="w-full">
                                <span id="mutationValue" class="text-xs">10%</span>
                            </div>
                        </div>
                    </div>
                    
                    <div class="bg-gray-800 p-4 rounded-lg">
                        <h3 class="font-semibold text-blue-300 mb-2">Performance</h3>
                        <div class="text-xs space-y-1">
                            <div>FPS: <span id="fpsCounter">0</span></div>
                            <div>Generation Time: <span id="genTime">0</span>ms</div>
                            <div>Best Progress: 
                                <div class="w-full bg-gray-700 h-2 rounded-full mt-1">
                                    <div id="bestProgressBar" class="h-full bg-green-500 rounded-full progress-bar" style="width: 0%"></div>
                                </div>
                            </div>
                        </div>
                    </div>
                </div>
            </div>
            
            <div class="lg:w-1/4">
                <div class="bg-gray-800 p-4 rounded-lg sticky top-4">
                    <h3 class="font-semibold text-blue-300 mb-3">How It Works</h3>
                    <div class="text-sm space-y-3 text-gray-300">
                        <p>This simulation demonstrates how AI can learn to drive through randomly generated courses using a genetic algorithm.</p>
                        
                        <p>Each time you click "New Track", the course layout and checkpoint locations are randomized. This forces the AI to develop general driving skills rather than memorizing a specific track.</p>
                        
                        <p>Key components:</p>
                        <ul class="list-disc pl-5 space-y-1">
                            <li><span class="font-medium">Random Tracks:</span> Procedurally generated with varying complexity</li>
                            <li><span class="font-medium">Sensors:</span> 5 distance sensors (front, left, right, front-left, front-right)</li>
                            <li><span class="font-medium">Neural Network:</span> 5 inputs, 1 hidden layer (6 neurons), 2 outputs (left/right)</li>
                            <li><span class="font-medium">Fitness:</span> Based on distance traveled and checkpoints reached</li>
                            <li><span class="font-medium">Mutation:</span> Random changes to keep diversity</li>
                        </ul>
                        
                        <div class="pt-2 border-t border-gray-700 mt-4">
                            <p class="text-xs text-gray-400">Watch as the AI learns to navigate completely new tracks!</p>
                        </div>
                    </div>
                </div>
            </div>
        </div>
    </div>

    <script>
        document.addEventListener('DOMContentLoaded', () => {
            // Canvas setup
            const canvas = document.getElementById('simulationCanvas');
            const ctx = canvas.getContext('2d');
            
            // UI elements
            const startBtn = document.getElementById('startBtn');
            const pauseBtn = document.getElementById('pauseBtn');
            const resetBtn = document.getElementById('resetBtn');
            const populationSlider = document.getElementById('populationSlider');
            const mutationSlider = document.getElementById('mutationSlider');
            const populationValue = document.getElementById('populationValue');
            const mutationValue = document.getElementById('mutationValue');
            const generationCount = document.getElementById('generationCount');
            const aliveCount = document.getElementById('aliveCount');
            const populationCount = document.getElementById('populationCount');
            const maxFitness = document.getElementById('maxFitness');
            const fpsCounter = document.getElementById('fpsCounter');
            const genTime = document.getElementById('genTime');
            const bestProgressBar = document.getElementById('bestProgressBar');
            
            // Simulation parameters
            let populationSize = parseInt(populationSlider.value);
            let mutationRate = parseInt(mutationSlider.value) / 100;
            let isRunning = false;
            let generation = 0;
            let lastFrameTime = 0;
            let fps = 0;
            let bestCarProgress = 0;
            
            // Track definition
            const track = {
                walls: [],
                checkpoints: [],
                startPosition: { x: 100, y: 250, angle: 0 },
                
                generateRandomTrack() {
                    this.walls = [];
                    this.checkpoints = [];
                    
                    // Outer boundary walls (always present)
                    this.walls.push(
                        { x: 50, y: 50, width: 700, height: 20 }, // top
                        { x: 50, y: 50, width: 20, height: 400 }, // left
                        { x: 50, y: 430, width: 700, height: 20 }, // bottom
                        { x: 730, y: 50, width: 20, height: 400 }  // right
                    );
                    
                    // Generate random obstacles (between 3-8 obstacles)
                    const obstacleCount = 3 + Math.floor(Math.random() * 6);
                    for (let i = 0; i < obstacleCount; i++) {
                        const isVertical = Math.random() > 0.5;
                        let x, y, width, height;
                        
                        if (isVertical) {
                            width = 20;
                            height = 50 + Math.random() * 200;
                            x = 100 + Math.random() * 600;
                            y = 100 + Math.random() * (400 - height);
                        } else {
                            width = 50 + Math.random() * 200;
                            height = 20;
                            x = 100 + Math.random() * (700 - width);
                            y = 100 + Math.random() * 300;
                        }
                        
                        // Make sure obstacle doesn't block the start position
                        if (!(x < 150 && y < 300 && y + height > 200)) {
                            this.walls.push({ x, y, width, height });
                        }
                    }
                    
                    // Generate checkpoints (3-5 checkpoints)
                    const checkpointCount = 3 + Math.floor(Math.random() * 3);
                    const checkpointSize = 30;
                    
                    // Generate positions that require navigating around obstacles
                    const possiblePositions = [
                        { x: 700, y: 100 }, // right side top
                        { x: 600, y: 400 }, // middle right bottom
                        { x: 300, y: 400 }, // middle bottom
                        { x: 100, y: 300 }, // left side middle
                        { x: 400, y: 100 }, // middle top
                        { x: 200, y: 200 }, // middle left
                        { x: 600, y: 200 }  // middle right
                    ];
                    
                    // Shuffle and take first checkpointCount positions
                    const shuffled = [...possiblePositions].sort(() => 0.5 - Math.random());
                    for (let i = 0; i < checkpointCount; i++) {
                        const pos = shuffled[i];
                        this.checkpoints.push({
                            x: pos.x,
                            y: pos.y,
                            width: checkpointSize,
                            height: checkpointSize
                        });
                    }
                    
                    // Set start position (always left side, but random vertical position)
                    this.startPosition = {
                        x: 100,
                        y: 100 + Math.random() * 300,
                        angle: 0
                    };
                },
                
                draw(ctx) {
                    // Draw walls
                    ctx.fillStyle = '#4a5568';
                    this.walls.forEach(wall => {
                        ctx.fillRect(wall.x, wall.y, wall.width, wall.height);
                    });
                    
                    // Draw checkpoints
                    ctx.fillStyle = 'rgba(74, 222, 128, 0.3)';
                    this.checkpoints.forEach(checkpoint => {
                        ctx.fillRect(checkpoint.x, checkpoint.y, checkpoint.width, checkpoint.height);
                    });
                    
                    // Draw start position
                    ctx.fillStyle = 'rgba(96, 165, 250, 0.5)';
                    ctx.fillRect(this.startPosition.x - 15, this.startPosition.y - 25, 30, 50);
                }
            };
            
            // Car class
            class Car {
                constructor(brain) {
                    this.reset();
                    this.brain = brain ? brain : new NeuralNetwork([5, 6, 2]);
                    this.fitness = 0;
                    this.checkpointIndex = 0;
                    this.sensors = [0, 0, 0, 0, 0]; // Front, left, right, front-left, front-right
                    this.sensorAngles = [0, -Math.PI/4, Math.PI/4, -Math.PI/8, Math.PI/8];
                    this.sensorLength = 100;
                    this.color = 'rgba(59, 130, 246, 0.8)';
                    this.isBest = false;
                }
                
                reset() {
                    this.x = track.startPosition.x;
                    this.y = track.startPosition.y;
                    this.angle = track.startPosition.angle;
                    this.speed = 0;
                    this.maxSpeed = 5;
                    this.acceleration = 0.1;
                    this.rotationSpeed = 0.05;
                    this.damaged = false;
                    this.checkpointIndex = 0;
                    this.fitness = 0;
                }
                
                update() {
                    if (this.damaged) return;
                    
                    // Update position
                    this.speed = this.maxSpeed;
                    this.x += Math.sin(this.angle) * this.speed;
                    this.y -= Math.cos(this.angle) * this.speed;
                    
                    // Update sensors
                    this.updateSensors();
                    
                    // Get neural network outputs
                    const outputs = this.brain.predict(this.sensors);
                    
                    // Apply steering (outputs[0] = left, outputs[1] = right)
                    const steering = outputs[1] - outputs[0]; // -1 to 1
                    this.angle += steering * this.rotationSpeed;
                    
                    // Check collisions
                    this.checkCollisions();
                    
                    // Check checkpoints
                    this.checkCheckpoints();
                    
                    // Update fitness
                    this.fitness += this.speed;
                }
                
                updateSensors() {
                    this.sensors = this.sensorAngles.map(angle => {
                        const sensorAngle = this.angle + angle;
                        let sensorX = this.x;
                        let sensorY = this.y;
                        let sensorEndX = this.x + Math.sin(sensorAngle) * this.sensorLength;
                        let sensorEndY = this.y - Math.cos(sensorAngle) * this.sensorLength;
                        
                        let minDistance = this.sensorLength;
                        
                        // Check against all walls
                        for (const wall of track.walls) {
                            const intersection = this.lineRectIntersection(
                                this.x, this.y, sensorEndX, sensorEndY,
                                wall.x, wall.y, wall.width, wall.height
                            );
                            
                            if (intersection) {
                                const distance = Math.sqrt(
                                    Math.pow(intersection.x - this.x, 2) + 
                                    Math.pow(intersection.y - this.y, 2)
                                );
                                minDistance = Math.min(minDistance, distance);
                            }
                        }
                        
                        // Normalize distance to 0-1 range (1 = no obstacle, 0 = obstacle at car)
                        return 1 - (minDistance / this.sensorLength);
                    });
                }
                
                lineRectIntersection(x1, y1, x2, y2, rx, ry, rw, rh) {
                    // Check if the line has hit any of the rectangle's sides
                    const left = this.lineLineIntersection(x1, y1, x2, y2, rx, ry, rx, ry + rh);
                    const right = this.lineLineIntersection(x1, y1, x2, y2, rx + rw, ry, rx + rw, ry + rh);
                    const top = this.lineLineIntersection(x1, y1, x2, y2, rx, ry, rx + rw, ry);
                    const bottom = this.lineLineIntersection(x1, y1, x2, y2, rx, ry + rh, rx + rw, ry + rh);
                    
                    let closestIntersection = null;
                    let minDistance = Infinity;
                    
                    [left, right, top, bottom].forEach(intersection => {
                        if (intersection) {
                            const distance = Math.sqrt(Math.pow(intersection.x - x1, 2) + Math.pow(intersection.y - y1, 2));
                            if (distance < minDistance) {
                                minDistance = distance;
                                closestIntersection = intersection;
                            }
                        }
                    });
                    
                    return closestIntersection;
                }
                
                lineLineIntersection(x1, y1, x2, y2, x3, y3, x4, y4) {
                    // Calculate the intersection point between two lines
                    const denominator = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
                    
                    if (denominator === 0) return null; // Lines are parallel
                    
                    const ua = ((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) / denominator;
                    const ub = ((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) / denominator;
                    
                    if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) {
                        return {
                            x: x1 + ua * (x2 - x1),
                            y: y1 + ua * (y2 - y1)
                        };
                    }
                    
                    return null;
                }
                
                checkCollisions() {
                    // Simple collision detection with walls
                    for (const wall of track.walls) {
                        if (this.x > wall.x && this.x < wall.x + wall.width &&
                            this.y > wall.y && this.y < wall.y + wall.height) {
                            this.damaged = true;
                            break;
                        }
                    }
                    
                    // Boundary checks
                    if (this.x < 0 || this.x > canvas.width || this.y < 0 || this.y > canvas.height) {
                        this.damaged = true;
                    }
                }
                
                checkCheckpoints() {
                    if (this.checkpointIndex >= track.checkpoints.length) return;
                    
                    const checkpoint = track.checkpoints[this.checkpointIndex];
                    if (this.x > checkpoint.x && this.x < checkpoint.x + checkpoint.width &&
                        this.y > checkpoint.y && this.y < checkpoint.y + checkpoint.height) {
                        this.checkpointIndex++;
                        this.fitness += 1000; // Bonus for reaching checkpoint
                        
                        // Update best progress
                        const progress = this.checkpointIndex / track.checkpoints.length;
                        if (progress > bestCarProgress) {
                            bestCarProgress = progress;
                            bestProgressBar.style.width = `${progress * 100}%`;
                        }
                    }
                }
                
                draw(ctx) {
                    if (this.damaged) return;
                    
                    ctx.save();
                    ctx.translate(this.x, this.y);
                    ctx.rotate(this.angle);
                    
                    // Draw car body
                    ctx.fillStyle = this.isBest ? 'rgba(220, 38, 38, 0.9)' : this.color;
                    ctx.fillRect(-6, -10, 12, 20);
                    
                    // Draw sensors (for best car)
                    if (this.isBest) {
                        ctx.strokeStyle = 'rgba(255, 255, 255, 0.5)';
                        ctx.lineWidth = 1;
                        
                        this.sensorAngles.forEach((angle, i) => {
                            const sensorAngle = this.angle + angle;
                            const sensorValue = this.sensors[i];
                            const sensorEndX = Math.sin(sensorAngle) * this.sensorLength * (1 - sensorValue);
                            const sensorEndY = -Math.cos(sensorAngle) * this.sensorLength * (1 - sensorValue);
                            
                            ctx.beginPath();
                            ctx.moveTo(0, 0);
                            ctx.lineTo(sensorEndX, sensorEndY);
                            ctx.stroke();
                        });
                    }
                    
                    ctx.restore();
                }
                
                clone() {
                    return new Car(this.brain.clone());
                }
            }
            
            // Neural Network class
            class NeuralNetwork {
                constructor(neuronCounts) {
                    this.levels = [];
                    for (let i = 0; i < neuronCounts.length - 1; i++) {
                        this.levels.push(new Level(
                            neuronCounts[i], neuronCounts[i + 1]
                        ));
                    }
                }
                
                static feedForward(givenInputs, network) {
                    let outputs = Level.feedForward(
                        givenInputs, network.levels[0]
                    );
                    for (let i = 1; i < network.levels.length; i++) {
                        outputs = Level.feedForward(
                            outputs, network.levels[i]
                        );
                    }
                    return outputs;
                }
                
                predict(inputs) {
                    return NeuralNetwork.feedForward(inputs, this);
                }
                
                clone() {
                    const clone = new NeuralNetwork([]);
                    clone.levels = this.levels.map(level => level.clone());
                    return clone;
                }
                
                mutate(rate) {
                    for (const level of this.levels) {
                        for (let i = 0; i < level.biases.length; i++) {
                            if (Math.random() < rate) {
                                level.biases[i] = lerp(
                                    level.biases[i],
                                    Math.random() * 2 - 1,
                                    0.5
                                );
                            }
                        }
                        for (let i = 0; i < level.weights.length; i++) {
                            for (let j = 0; j < level.weights[i].length; j++) {
                                if (Math.random() < rate) {
                                    level.weights[i][j] = lerp(
                                        level.weights[i][j],
                                        Math.random() * 2 - 1,
                                        0.5
                                    );
                                }
                            }
                        }
                    }
                }
            }
            
            function lerp(a, b, t) {
                return a + (b - a) * t;
            }
            
            class Level {
                constructor(inputCount, outputCount) {
                    this.inputs = new Array(inputCount);
                    this.outputs = new Array(outputCount);
                    this.biases = new Array(outputCount);
                    this.weights = [];
                    
                    for (let i = 0; i < inputCount; i++) {
                        this.weights[i] = new Array(outputCount);
                    }
                    
                    Level.#randomize(this);
                }
                
                static #randomize(level) {
                    for (let i = 0; i < level.inputs.length; i++) {
                        for (let j = 0; j < level.outputs.length; j++) {
                            level.weights[i][j] = Math.random() * 2 - 1;
                        }
                    }
                    
                    for (let i = 0; i < level.biases.length; i++) {
                        level.biases[i] = Math.random() * 2 - 1;
                    }
                }
                
                static feedForward(givenInputs, level) {
                    for (let i = 0; i < level.inputs.length; i++) {
                        level.inputs[i] = givenInputs[i];
                    }
                    
                    for (let i = 0; i < level.outputs.length; i++) {
                        let sum = 0;
                        for (let j = 0; j < level.inputs.length; j++) {
                            sum += level.inputs[j] * level.weights[j][i];
                        }
                        
                        level.outputs[i] = sum > level.biases[i] ? 1 : 0;
                    }
                    
                    return level.outputs;
                }
                
                clone() {
                    const clone = new Level(0, 0);
                    clone.inputs = [...this.inputs];
                    clone.outputs = [...this.outputs];
                    clone.biases = [...this.biases];
                    clone.weights = this.weights.map(arr => [...arr]);
                    return clone;
                }
            }
            
            // Genetic algorithm functions
            function nextGeneration() {
                const startTime = performance.now();
                generation++;
                generationCount.textContent = generation;
				
				// lunarflu
				track.generateRandomTrack();
                
                // Calculate fitness
                calculateFitness();
                
                // Create new population
                const newPopulation = [];
                
                // Add the best car from previous generation (elitism)
                const bestCar = getBestCar();
                bestCar.isBest = true;
                newPopulation.push(bestCar.clone());
                
                // Fill the rest with crossover and mutation
                for (let i = 1; i < populationSize; i++) {
                    const parent = selectParent();
                    const child = parent.clone();
                    child.brain.mutate(mutationRate);
                    newPopulation.push(child);
                }
                
                // Replace old population
                cars = newPopulation;
                
                // Reset cars
                cars.forEach(car => car.reset());
                
                // Update UI
                const endTime = performance.now();
                genTime.textContent = Math.round(endTime - startTime);
                bestCarProgress = 0;
                bestProgressBar.style.width = '0%';
            }
            
            function calculateFitness() {
                let sum = 0;
                let max = 0;
                
                cars.forEach(car => {
                    // Add bonus for checkpoints reached
                    car.fitness += car.checkpointIndex * 500;
                    sum += car.fitness;
                    if (car.fitness > max) max = car.fitness;
                });
                
                // Normalize fitness
                cars.forEach(car => {
                    car.fitness = car.fitness / sum;
                });
                
                maxFitness.textContent = Math.round(max);
            }
            
            function getBestCar() {
                let bestCar = cars[0];
                let bestFitness = cars[0].fitness;
                
                for (let i = 1; i < cars.length; i++) {
                    if (cars[i].fitness > bestFitness) {
                        bestFitness = cars[i].fitness;
                        bestCar = cars[i];
                    }
                }
                
                return bestCar;
            }
            
            function selectParent() {
                let index = 0;
                let r = Math.random();
                
                while (r > 0) {
                    r -= cars[index].fitness;
                    index++;
                }
                
                index--;
                return cars[index];
            }
            
            // Simulation state
            let cars = [];
            let animationId;
            let lastTime = 0;
            let frameCount = 0;
            let lastFpsUpdate = 0;
            
            // Initialize simulation
            function init() {
                // Generate random track
                track.generateRandomTrack();
                
                // Create initial population
                cars = [];
                for (let i = 0; i < populationSize; i++) {
                    cars.push(new Car());
                }
                
                generation = 0;
                generationCount.textContent = generation;
                populationCount.textContent = populationSize;
                
                // Start simulation
                isRunning = true;
                lastTime = performance.now();
                animate();
            }
            
            // Main animation loop
            function animate(currentTime = 0) {
                if (!isRunning) return;
                
                animationId = requestAnimationFrame(animate);
                
                // Calculate FPS
                frameCount++;
                if (currentTime - lastFpsUpdate >= 1000) {
                    fps = Math.round((frameCount * 1000) / (currentTime - lastFpsUpdate));
                    fpsCounter.textContent = fps;
                    frameCount = 0;
                    lastFpsUpdate = currentTime;
                }
                
                // Clear canvas
                ctx.clearRect(0, 0, canvas.width, canvas.height);
                
                // Draw track
                track.draw(ctx);
                
                // Update and draw cars
                let alive = 0;
                cars.forEach(car => {
                    car.update();
                    car.draw(ctx);
                    if (!car.damaged) alive++;
                });
                
                aliveCount.textContent = alive;
                
                // Check if all cars are dead
                if (alive === 0) {
                    nextGeneration();
                }
                
                // Highlight best car
                const bestCar = getBestCar();
                if (bestCar) {
                    bestCar.isBest = true;
                    bestCar.color = 'rgba(220, 38, 38, 0.9)';
                }
            }
            
            // Event listeners
            startBtn.addEventListener('click', () => {
                if (!isRunning) {
                    isRunning = true;
                    animate();
                }
            });
            
            pauseBtn.addEventListener('click', () => {
                isRunning = false;
                cancelAnimationFrame(animationId);
            });
            
            resetBtn.addEventListener('click', () => {
                isRunning = false;
                cancelAnimationFrame(animationId);
                init();
            });
            
            populationSlider.addEventListener('input', () => {
                populationSize = parseInt(populationSlider.value);
                populationValue.textContent = populationSize;
            });
            
            mutationSlider.addEventListener('input', () => {
                mutationRate = parseInt(mutationSlider.value) / 100;
                mutationValue.textContent = `${parseInt(mutationSlider.value)}%`;
            });
            
            // Initialize the simulation
            init();
        });
    </script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - 🧬 <a href="https://enzostvs-deepsite.hf.space?remix=lunarflu/https-huggingface-co-spaces-lunarflu-rpg" style="color: #fff;text-decoration: underline;" target="_blank" >Remix</a></p></body>
</html>