File size: 5,676 Bytes
53edc5f
fe2a94a
 
 
 
ac9616e
fe2a94a
53edc5f
 
 
 
 
 
ac9616e
fe2a94a
673f548
53edc5f
 
 
 
 
 
 
ac9616e
53edc5f
633ddbf
53edc5f
ac9616e
53edc5f
 
ac9616e
 
 
633ddbf
53edc5f
633ddbf
53edc5f
 
 
633ddbf
 
 
 
ac9616e
53edc5f
ac9616e
db25782
633ddbf
53edc5f
ac9616e
53edc5f
 
ac9616e
53edc5f
 
ac9616e
53edc5f
ac9616e
 
53edc5f
 
 
 
 
 
 
 
 
 
 
 
fe2a94a
 
53edc5f
fe2a94a
53edc5f
ac9616e
53edc5f
 
 
 
 
 
 
 
 
 
 
 
 
ac9616e
53edc5f
ac9616e
 
53edc5f
 
 
 
 
ac9616e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53edc5f
 
 
 
 
ac9616e
 
 
 
 
 
53edc5f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import numpy as np
import cv2
import onnxruntime
import gradio as gr
from PIL import Image

# === Pre-/Post-Processing ===
def pre_process(img: np.ndarray) -> np.ndarray:
    # Convert HWC-BGR to CHW-RGB and batch
    img = img[:, :, :3]
    img = img[:, :, ::-1]  # BGR to RGB
    img = np.transpose(img, (2, 0, 1))
    return np.expand_dims(img, axis=0).astype(np.float32)


def post_process(out: np.ndarray) -> np.ndarray:
    # Remove batch dimension, convert CHW-RGB to HWC-BGR
    img = np.squeeze(out, axis=0)
    img = np.transpose(img, (1, 2, 0))
    img = img[:, :, ::-1]  # RGB to BGR
    img = np.clip(img, 0, 255).astype(np.uint8)
    return img

# === ONNX Inference Session with Dynamic Providers ===

def get_session(model_path: str) -> onnxruntime.InferenceSession:
    if model_path not in get_session.cache:
        if not os.path.isfile(model_path):
            raise FileNotFoundError(f"Model file not found: {model_path}")
        opts = onnxruntime.SessionOptions()
        opts.intra_op_num_threads = 1
        opts.inter_op_num_threads = 1

        # Select CUDA if available
        providers = []
        for p in onnxruntime.get_available_providers():
            if p == "CUDAExecutionProvider":
                providers.append(p)
        providers.append("CPUExecutionProvider")

        sess = onnxruntime.InferenceSession(model_path, opts, providers=providers)
        get_session.cache[model_path] = sess
    return get_session.cache[model_path]

get_session.cache = {}


def run_inference(model_path: str, input_tensor: np.ndarray) -> np.ndarray:
    session = get_session(model_path)
    input_name = session.get_inputs()[0].name
    return session.run(None, {input_name: input_tensor})[0]

# === Image Conversion ===
def convert_pil_to_cv2(image: Image.Image) -> np.ndarray:
    arr = np.array(image)
    # If grayscale
    if arr.ndim == 2:
        return cv2.cvtColor(arr, cv2.COLOR_GRAY2BGR)
    # If RGBA
    if arr.shape[2] == 4:
        return arr[:, :, ::-1].copy()  # RGBA to ABGR
    # RGB
    return arr[:, :, ::-1].copy()      # RGB to BGR

# === Upscale Handler ===
def upscale(image: Image.Image, model_choice: str) -> np.ndarray:
    """
    Upscale an image (RGB or RGBA) using the selected ONNX model.
    """
    model_path = os.path.join("models", f"{model_choice}.ort")
    img = convert_pil_to_cv2(image)

    # Handle alpha channel separately
    if img.shape[2] == 4:
        # Split channels
        rgb = img[:, :, :3]
        alpha = img[:, :, 3]

        # Process RGB
        in_rgb = pre_process(rgb)
        out_rgb = post_process(run_inference(model_path, in_rgb))

        # Process alpha as grayscale
        alpha_bgr = cv2.cvtColor(alpha, cv2.COLOR_GRAY2BGR)
        in_alpha = pre_process(alpha_bgr)
        out_alpha = post_process(run_inference(model_path, in_alpha))
        out_alpha = cv2.cvtColor(out_alpha, cv2.COLOR_BGR2GRAY)

        # Merge back to RGBA
        rgba = cv2.cvtColor(out_rgb, cv2.COLOR_BGR2BGRA)
        rgba[:, :, 3] = out_alpha
        return rgba

    # No alpha
    inp = pre_process(img)
    return post_process(run_inference(model_path, inp))

# === Custom Dark Blue-Grey CSS ===
custom_css = """
/* Dark Gradient Background */
body .gradio-container {
    background: linear-gradient(135deg, #0d1b2a, #1b263b, #415a77, #1b263b);
    background-size: 400% 400%;
    animation: bgFade 25s ease infinite;
}
@keyframes bgFade {
    0% { background-position: 0% 0%; }
    50% { background-position: 100% 100%; }
    100% { background-position: 0% 0%; }
}
/* Title Styling */
.fancy-title {
    font-family: 'Poppins', sans-serif;
    font-size: 2.8rem;
    background: linear-gradient(90deg, #778da9, #415a77);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    animation: fadeInText 2s ease-out;
    text-align: center;
    margin-bottom: 1rem;
}
@keyframes fadeInText {
    0% { opacity: 0; transform: translateY(-10px); }
    100% { opacity: 1; transform: translateY(0); }
}
/* Inputs & Outputs */
.gradio-image, .gradio-gallery {
    animation: fadeIn 1.2s ease-in;
    border-radius: 10px;
    box-shadow: 0 4px 12px rgba(0,0,0,0.5);
    border: 2px solid #415a77;
}
@keyframes fadeIn {
    from { opacity: 0; }
    to { opacity: 1; }
}
/* Radio Hover */
.gradio-radio input[type="radio"] + label:hover {
    transform: scale(1.1);
    color: #e0e1dd;
    transition: transform 0.2s, color 0.2s;
}
/* Button Styling */
.gradio-button {
    background: linear-gradient(90deg, #1b263b, #415a77);
    border: 1px solid #778da9;
    border-radius: 6px;
    color: #e0e1dd;
    font-weight: 600;
    padding: 10px 22px;
    cursor: pointer;
    box-shadow: 0 2px 6px rgba(0,0,0,0.7);
    transition: background 0.3s, transform 0.2s;
}
.gradio-button:hover {
    background: linear-gradient(90deg, #415a77, #1b263b);
    transform: scale(1.03);
}
#upscale_btn { margin-top: 1rem; }
.gradio-row { gap: 1rem; }
"""

# === Gradio Blocks App ===
with gr.Blocks(css=custom_css) as demo:
    gr.HTML("<h1 class='fancy-title'>✨ Ultra AI Image Upscaler ✨</h1>")
    with gr.Row():
        inp = gr.Image(type="pil", label="Drop Your Image Here")
        model = gr.Radio(
            choices=["modelx2", "modelx2_25JXL", "modelx4", "minecraft_modelx4"],
            label="Upscaler Model",
            value="modelx2"
        )
    btn = gr.Button("Upscale Image", elem_id="upscale_btn")
    out = gr.Image(label="Upscaled Output")
    btn.click(fn=upscale, inputs=[inp, model], outputs=out)
    gr.HTML("<p style='text-align:center; color:#e0e1dd;'>Powered by ONNX Runtime & Gradio Blocks</p>")

if __name__ == "__main__":
    demo.launch()