Spaces:
Runtime error
Runtime error
File size: 3,660 Bytes
73b49a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import marimo
__generated_with = "0.10.17"
app = marimo.App(width="medium")
@app.cell
def _():
import marimo as mo
import pdfplumber
return mo, pdfplumber
@app.cell
def _(mo):
file = mo.ui.file_browser(initial_path="")
file
return (file,)
@app.cell
def _(file, pdfplumber):
with pdfplumber.open(file.path()) as pdf:
# Join all pages into single string
pdf_text = " ".join(p.extract_text() for p in pdf.pages)
return pdf, pdf_text
@app.cell
def _():
from everycure.extract import extract_pdf_entities
return (extract_pdf_entities,)
@app.cell
def _(pdf_text):
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
result = pipe(pdf_text)
result
return (
AutoModelForTokenClassification,
AutoTokenizer,
model,
pipe,
pipeline,
result,
tokenizer,
)
@app.cell
def _():
from gliner import GLiNER
# Curated medical labels based on your domain needs
MEDICAL_LABELS = [
# Parent: NamedThing -> biological_entity
"gene",
"protein",
"protein_isoform",
"cell",
"disease",
"phenotypic_feature",
"clinical_finding",
"anatomical_entity",
"pathway",
"biological_process",
# Parent: NamedThing -> chemical_entity
"drug",
"small_molecule",
"food_additive",
"chemical_mixture",
"molecular_entity",
# Parent: NamedThing -> clinical_entity
"clinical_intervention",
"clinical_trial",
"hospitalization",
# Parent: NamedThing -> planetary_entity
"geographic_location",
"environmental_feature",
"environmental_process",
# Parent: NamedThing -> information_content_entity
"publication",
"journal_article",
"book",
"patent",
"dataset",
"study_result",
# Parent: NamedThing -> organismal_entity
"human",
"mammal",
"plant",
"virus",
"bacterium",
"cell_line",
# Parent: NamedThing -> attribute
"biological_sex",
"clinical_attribute",
"socioeconomic_attribute",
"environmental_exposure",
"drug_exposure",
# Parent: NamedThing -> procedure
"procedure",
# Parent: NamedThing -> treatment
"treatment",
# Parent: NamedThing -> device
"device",
# Parent: NamedThing -> diagnostic_aid
"diagnostic_aid",
# Parent: NamedThing -> event
"event",
]
gliner_model = GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5")
def gliner_medical_ner(text, threshold=0.7):
entities = gliner_model.predict_entities(text, MEDICAL_LABELS, threshold=threshold)
return [{"text": ent["text"], "label": ent["label"]}
for ent in entities if len(ent["text"]) > 2] # Filter short fragments
return GLiNER, MEDICAL_LABELS, gliner_medical_ner, gliner_model
@app.cell
def _(gliner_medical_ner, pdf_text):
result_gli = gliner_medical_ner(pdf_text)
return (result_gli,)
@app.cell
def _(result_gli):
result_gli
return
@app.cell
def _():
return
if __name__ == "__main__":
app.run()
|