File size: 1,631 Bytes
73b49a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from fastapi import FastAPI, UploadFile, HTTPException
from typing import List
from extractor import Entity, extract_entities_from_pdf
import logging
import uvicorn

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

app = FastAPI(
    title="Medical Entity Extraction API",
    description="This API allows users to extract medically relevant entities from PDF documents using a pre-trained NER model.",
    version="1.0.0"
)

from fastapi.middleware.cors import CORSMiddleware

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

# Rest of your existing code
@app.post("/api/v1/extract", response_model=List[Entity])
async def extract_entities(file: UploadFile):
    logger.debug(f"Received request for file: {file.filename}")
    
    if not file:
        logger.error("No file provided")
        raise HTTPException(status_code=400, detail="No file provided")
    
    if not file.filename.lower().endswith('.pdf'):
        logger.error(f"Invalid file type: {file.filename}")
        raise HTTPException(status_code=415, detail="File must be a PDF")
    
    try:
        logger.debug("Starting entity extraction")
        result = extract_entities_from_pdf(file)
        logger.debug(f"Successfully extracted {len(result)} entities")
        return result
    except Exception as e:
        logger.error(f"Error during extraction: {str(e)}", exc_info=True)
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)