Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
4 |
+
import pickle
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
# Download files from model repo
|
8 |
+
model_path = hf_hub_download("lokas/spam-emails-classifier", "model.h5")
|
9 |
+
tokenizer_path = hf_hub_download("lokas/spam-emails-classifier", "tokenizer.pkl")
|
10 |
+
|
11 |
+
# Load model and tokenizer
|
12 |
+
model = load_model(model_path)
|
13 |
+
with open(tokenizer_path, "rb") as f:
|
14 |
+
tokenizer = pickle.load(f)
|
15 |
+
|
16 |
+
SEQUENCE_LENGTH = 50 # Must match training
|
17 |
+
|
18 |
+
def predict_spam(text):
|
19 |
+
seq = tokenizer.texts_to_sequences([text])
|
20 |
+
padded = pad_sequences(seq, maxlen=SEQUENCE_LENGTH)
|
21 |
+
pred = model.predict(padded)[0][0]
|
22 |
+
return "🚫 Spam" if pred > 0.5 else "✅ Not Spam"
|
23 |
+
|
24 |
+
interface = gr.Interface(
|
25 |
+
fn=predict_spam,
|
26 |
+
inputs=gr.Textbox(lines=3, placeholder="Paste an email message..."),
|
27 |
+
outputs="text",
|
28 |
+
title="Spam Email Detector",
|
29 |
+
description="A BiLSTM-based spam classifier trained on the Enron dataset with GloVe embeddings."
|
30 |
+
)
|
31 |
+
|
32 |
+
interface.launch()
|