File size: 1,707 Bytes
801ef11
 
 
 
 
 
 
 
 
b50317a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6e4831
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
---
title: README
emoji: πŸŒ–
colorFrom: yellow
colorTo: indigo
sdk: static
pinned: false
---

# LiteRT Community 

A community org for developers to discover models that are ready for deployment to edge platforms. [LiteRT](https://ai.google.dev/edge/litert), formerly known as TensorFlow Lite, is a high-performance runtime for on-device AI. 

Models in the organization are pre-converted and ready to be used on [Android](https://ai.google.dev/edge/litert/android) and [iOS](https://ai.google.dev/edge/litert/ios/quickstart). For more information on how to run these models see our [LiteRT Documentation](https://ai.google.dev/edge/litert).

## LLMs 

To make LLMs as simple as possible, LiteRT models can be bundled into .task files compatible with [MediaPipe LLM Inference API](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference). MediaPipe LLM Inference API wraps LiteRT to provide an easy prompt in -> response out interface on [Android](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference/android), [iOS](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference/ios), and [Web](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference/web_js).

## How to Convert and Contribute Models

Follow the instructions for converting from [TensorFlow](https://ai.google.dev/edge/litert/models/convert_tf), [PyTorch](https://github.com/google-ai-edge/ai-edge-torch), or [JAX](https://ai.google.dev/edge/litert/models/convert_jax).  

For LLMs specifically, use the [LiteRT Torch Generative API](https://github.com/google-ai-edge/ai-edge-torch/tree/main/ai_edge_torch/generative). 

Once converted, join the LiteRT community org and add the model yourself.