Spaces:
Running
Running
File size: 1,707 Bytes
801ef11 b50317a c6e4831 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
---
title: README
emoji: π
colorFrom: yellow
colorTo: indigo
sdk: static
pinned: false
---
# LiteRT Community
A community org for developers to discover models that are ready for deployment to edge platforms. [LiteRT](https://ai.google.dev/edge/litert), formerly known as TensorFlow Lite, is a high-performance runtime for on-device AI.
Models in the organization are pre-converted and ready to be used on [Android](https://ai.google.dev/edge/litert/android) and [iOS](https://ai.google.dev/edge/litert/ios/quickstart). For more information on how to run these models see our [LiteRT Documentation](https://ai.google.dev/edge/litert).
## LLMs
To make LLMs as simple as possible, LiteRT models can be bundled into .task files compatible with [MediaPipe LLM Inference API](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference). MediaPipe LLM Inference API wraps LiteRT to provide an easy prompt in -> response out interface on [Android](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference/android), [iOS](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference/ios), and [Web](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference/web_js).
## How to Convert and Contribute Models
Follow the instructions for converting from [TensorFlow](https://ai.google.dev/edge/litert/models/convert_tf), [PyTorch](https://github.com/google-ai-edge/ai-edge-torch), or [JAX](https://ai.google.dev/edge/litert/models/convert_jax).
For LLMs specifically, use the [LiteRT Torch Generative API](https://github.com/google-ai-edge/ai-edge-torch/tree/main/ai_edge_torch/generative).
Once converted, join the LiteRT community org and add the model yourself.
|