Spaces:
Running
on
Zero
Running
on
Zero
lllyasviel
commited on
Commit
·
9360743
0
Parent(s):
- .gitignore +178 -0
- LICENSE +201 -0
- README.md +469 -0
- demo_gradio.py +399 -0
- diffusers_helper/bucket_tools.py +30 -0
- diffusers_helper/clip_vision.py +12 -0
- diffusers_helper/dit_common.py +53 -0
- diffusers_helper/gradio/progress_bar.py +86 -0
- diffusers_helper/hf_login.py +21 -0
- diffusers_helper/hunyuan.py +111 -0
- diffusers_helper/k_diffusion/uni_pc_fm.py +141 -0
- diffusers_helper/k_diffusion/wrapper.py +51 -0
- diffusers_helper/memory.py +134 -0
- diffusers_helper/models/hunyuan_video_packed.py +1032 -0
- diffusers_helper/pipelines/k_diffusion_hunyuan.py +120 -0
- diffusers_helper/thread_utils.py +76 -0
- diffusers_helper/utils.py +613 -0
- requirements.txt +15 -0
.gitignore
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
hf_download/
|
2 |
+
outputs/
|
3 |
+
repo/
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
share/python-wheels/
|
28 |
+
*.egg-info/
|
29 |
+
.installed.cfg
|
30 |
+
*.egg
|
31 |
+
MANIFEST
|
32 |
+
|
33 |
+
# PyInstaller
|
34 |
+
# Usually these files are written by a python script from a template
|
35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
36 |
+
*.manifest
|
37 |
+
*.spec
|
38 |
+
|
39 |
+
# Installer logs
|
40 |
+
pip-log.txt
|
41 |
+
pip-delete-this-directory.txt
|
42 |
+
|
43 |
+
# Unit test / coverage reports
|
44 |
+
htmlcov/
|
45 |
+
.tox/
|
46 |
+
.nox/
|
47 |
+
.coverage
|
48 |
+
.coverage.*
|
49 |
+
.cache
|
50 |
+
nosetests.xml
|
51 |
+
coverage.xml
|
52 |
+
*.cover
|
53 |
+
*.py,cover
|
54 |
+
.hypothesis/
|
55 |
+
.pytest_cache/
|
56 |
+
cover/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
.pybuilder/
|
80 |
+
target/
|
81 |
+
|
82 |
+
# Jupyter Notebook
|
83 |
+
.ipynb_checkpoints
|
84 |
+
|
85 |
+
# IPython
|
86 |
+
profile_default/
|
87 |
+
ipython_config.py
|
88 |
+
|
89 |
+
# pyenv
|
90 |
+
# For a library or package, you might want to ignore these files since the code is
|
91 |
+
# intended to run in multiple environments; otherwise, check them in:
|
92 |
+
# .python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# UV
|
102 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
103 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
104 |
+
# commonly ignored for libraries.
|
105 |
+
#uv.lock
|
106 |
+
|
107 |
+
# poetry
|
108 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
109 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
110 |
+
# commonly ignored for libraries.
|
111 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
112 |
+
#poetry.lock
|
113 |
+
|
114 |
+
# pdm
|
115 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
116 |
+
#pdm.lock
|
117 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
118 |
+
# in version control.
|
119 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
120 |
+
.pdm.toml
|
121 |
+
.pdm-python
|
122 |
+
.pdm-build/
|
123 |
+
|
124 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
125 |
+
__pypackages__/
|
126 |
+
|
127 |
+
# Celery stuff
|
128 |
+
celerybeat-schedule
|
129 |
+
celerybeat.pid
|
130 |
+
|
131 |
+
# SageMath parsed files
|
132 |
+
*.sage.py
|
133 |
+
|
134 |
+
# Environments
|
135 |
+
.env
|
136 |
+
.venv
|
137 |
+
env/
|
138 |
+
venv/
|
139 |
+
ENV/
|
140 |
+
env.bak/
|
141 |
+
venv.bak/
|
142 |
+
|
143 |
+
# Spyder project settings
|
144 |
+
.spyderproject
|
145 |
+
.spyproject
|
146 |
+
|
147 |
+
# Rope project settings
|
148 |
+
.ropeproject
|
149 |
+
|
150 |
+
# mkdocs documentation
|
151 |
+
/site
|
152 |
+
|
153 |
+
# mypy
|
154 |
+
.mypy_cache/
|
155 |
+
.dmypy.json
|
156 |
+
dmypy.json
|
157 |
+
|
158 |
+
# Pyre type checker
|
159 |
+
.pyre/
|
160 |
+
|
161 |
+
# pytype static type analyzer
|
162 |
+
.pytype/
|
163 |
+
|
164 |
+
# Cython debug symbols
|
165 |
+
cython_debug/
|
166 |
+
|
167 |
+
# PyCharm
|
168 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
169 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
170 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
171 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
172 |
+
.idea/
|
173 |
+
|
174 |
+
# Ruff stuff:
|
175 |
+
.ruff_cache/
|
176 |
+
|
177 |
+
# PyPI configuration file
|
178 |
+
.pypirc
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p align="center">
|
2 |
+
<img src="https://github.com/user-attachments/assets/2cc030b4-87e1-40a0-b5bf-1b7d6b62820b" width="300">
|
3 |
+
</p>
|
4 |
+
|
5 |
+
# FramePack
|
6 |
+
|
7 |
+
Official implementation and desktop software for ["Packing Input Frame Context in Next-Frame Prediction Models for Video Generation"](https://lllyasviel.github.io/frame_pack_gitpage/pack.pdf).
|
8 |
+
|
9 |
+
Links: [**Paper**](https://lllyasviel.github.io/frame_pack_gitpage/pack.pdf), [**Project Page**](https://lllyasviel.github.io/frame_pack_gitpage/)
|
10 |
+
|
11 |
+
FramePack is a next-frame (next-frame-section) prediction model that generates videos progressively.
|
12 |
+
|
13 |
+
FramePack compresses input contexts to a constant length so that the generation workload is invariant to video length.
|
14 |
+
|
15 |
+
FramePack can process a very large number of frames with 13B models even on laptop GPUs.
|
16 |
+
|
17 |
+
FramePack can be trained with a much larger batch size, similar to the batch size for image diffusion training.
|
18 |
+
|
19 |
+
**Video diffusion, but feels like image diffusion.**
|
20 |
+
|
21 |
+
# Requirements
|
22 |
+
|
23 |
+
Note that this repo is a functional desktop software with minimal standalone high-quality sampling system and memory management.
|
24 |
+
|
25 |
+
**Start with this repo before you try anything else!**
|
26 |
+
|
27 |
+
Requirements:
|
28 |
+
|
29 |
+
* Nvidia GPU in RTX 30XX, 40XX, 50XX series that supports fp16 and bf16. The GTX 10XX/20XX are not tested.
|
30 |
+
* Linux or Windows operating system.
|
31 |
+
* At least 6GB GPU memory.
|
32 |
+
|
33 |
+
To generate 1-minute video (60 seconds) at 30fps (1800 frames) using 13B model, the minimal required GPU memory is 6GB. (Yes 6 GB, not a typo. Laptop GPUs are okay.)
|
34 |
+
|
35 |
+
About speed, on my RTX 4090 desktop it generates at a speed of 2.5 seconds/frame (unoptimized) or 1.5 seconds/frame (teacache). On my laptops like 3070ti laptop or 3060 laptop, it is about 4x to 8x slower.
|
36 |
+
|
37 |
+
In any case, you will directly see the generated frames since it is next-frame(-section) prediction. So you will get lots of visual feedback before the entire video is generated.
|
38 |
+
|
39 |
+
# Installation
|
40 |
+
|
41 |
+
**Windows**:
|
42 |
+
|
43 |
+
One-click-package will be released soon. Please come back tomorrow.
|
44 |
+
|
45 |
+
**Linux**:
|
46 |
+
|
47 |
+
We recommend having an independent Python 3.10.
|
48 |
+
|
49 |
+
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
|
50 |
+
pip install -r requirements.txt
|
51 |
+
|
52 |
+
To start the GUI, run:
|
53 |
+
|
54 |
+
python demo_gradio.py
|
55 |
+
|
56 |
+
Note that it supports `--share`, `--port`, `--server`, and so on.
|
57 |
+
|
58 |
+
The software supports PyTorch attention, xformers, flash-attn, sage-attention. By default, it will just use PyTorch attention. You can install those attention kernels if you know how.
|
59 |
+
|
60 |
+
For example, to install sage-attention (linux):
|
61 |
+
|
62 |
+
pip install sageattention==1.0.6
|
63 |
+
|
64 |
+
However, you are highly recommended to first try without sage-attention since it will influence results, though the influence is minimal.
|
65 |
+
|
66 |
+
# GUI
|
67 |
+
|
68 |
+

|
69 |
+
|
70 |
+
On the left you upload an image and write a prompt.
|
71 |
+
|
72 |
+
On the right are the generated videos and latent previews.
|
73 |
+
|
74 |
+
Because this is a next-frame-section prediction model, videos will be generated longer and longer.
|
75 |
+
|
76 |
+
You will see the progress bar for each section and the latent preview for the next section.
|
77 |
+
|
78 |
+
Note that the initial progress may be slower than later diffusion as the device may need some warmup.
|
79 |
+
|
80 |
+
# Sanity Check
|
81 |
+
|
82 |
+
Before trying your own inputs, we highly recommend going through the sanity check to find out if any hardware or software went wrong.
|
83 |
+
|
84 |
+
Next-frame-section prediction models are very sensitive to subtle differences in noise and hardware. Usually, people will get slightly different results on different devices, but the results should look overall similar. In some cases, if possible, you'll get exactly the same results.
|
85 |
+
|
86 |
+
## Image-to-5-seconds
|
87 |
+
|
88 |
+
Download this image:
|
89 |
+
|
90 |
+
<img src="https://github.com/user-attachments/assets/f3bc35cf-656a-4c9c-a83a-bbab24858b09" width="150">
|
91 |
+
|
92 |
+
Copy this prompt:
|
93 |
+
|
94 |
+
`The man dances energetically, leaping mid-air with fluid arm swings and quick footwork.`
|
95 |
+
|
96 |
+
Set like this:
|
97 |
+
|
98 |
+
(all default parameters, with teacache turned off)
|
99 |
+

|
100 |
+
|
101 |
+
The result will be:
|
102 |
+
|
103 |
+
<table>
|
104 |
+
<tr>
|
105 |
+
<td align="center" width="300">
|
106 |
+
<video
|
107 |
+
src="https://github.com/user-attachments/assets/bc74f039-2b14-4260-a30b-ceacf611a185"
|
108 |
+
controls
|
109 |
+
style="max-width:100%;">
|
110 |
+
</video>
|
111 |
+
</td>
|
112 |
+
</tr>
|
113 |
+
<tr>
|
114 |
+
<td align="center">
|
115 |
+
<em>Video may be compressed by GitHub</em>
|
116 |
+
</td>
|
117 |
+
</tr>
|
118 |
+
</table>
|
119 |
+
|
120 |
+
**Important Note:**
|
121 |
+
|
122 |
+
Again, this is a next-frame-section prediction model. This means you will generate videos frame-by-frame or section-by-section.
|
123 |
+
|
124 |
+
**If you get a much shorter video in the UI, like a video with only 1 second, then it is totally expected.** You just need to wait. More sections will be generated to complete the video.
|
125 |
+
|
126 |
+
## Know the influence of TeaCache and Quantization
|
127 |
+
|
128 |
+
Download this image:
|
129 |
+
|
130 |
+
<img src="https://github.com/user-attachments/assets/42293e30-bdd4-456d-895c-8fedff71be04" width="150">
|
131 |
+
|
132 |
+
Copy this prompt:
|
133 |
+
|
134 |
+
`The girl dances gracefully, with clear movements, full of charm.`
|
135 |
+
|
136 |
+
Set like this:
|
137 |
+
|
138 |
+

|
139 |
+
|
140 |
+
Turn off teacache:
|
141 |
+
|
142 |
+

|
143 |
+
|
144 |
+
You will get this:
|
145 |
+
|
146 |
+
<table>
|
147 |
+
<tr>
|
148 |
+
<td align="center" width="300">
|
149 |
+
<video
|
150 |
+
src="https://github.com/user-attachments/assets/04ab527b-6da1-4726-9210-a8853dda5577"
|
151 |
+
controls
|
152 |
+
style="max-width:100%;">
|
153 |
+
</video>
|
154 |
+
</td>
|
155 |
+
</tr>
|
156 |
+
<tr>
|
157 |
+
<td align="center">
|
158 |
+
<em>Video may be compressed by GitHub</em>
|
159 |
+
</td>
|
160 |
+
</tr>
|
161 |
+
</table>
|
162 |
+
|
163 |
+
Now turn on teacache:
|
164 |
+
|
165 |
+

|
166 |
+
|
167 |
+
About 30% users will get this (the other 70% will get other random results depending on their hardware):
|
168 |
+
|
169 |
+
<table>
|
170 |
+
<tr>
|
171 |
+
<td align="center" width="300">
|
172 |
+
<video
|
173 |
+
src="https://github.com/user-attachments/assets/149fb486-9ccc-4a48-b1f0-326253051e9b"
|
174 |
+
controls
|
175 |
+
style="max-width:100%;">
|
176 |
+
</video>
|
177 |
+
</td>
|
178 |
+
</tr>
|
179 |
+
<tr>
|
180 |
+
<td align="center">
|
181 |
+
<em>A typical worse result.</em>
|
182 |
+
</td>
|
183 |
+
</tr>
|
184 |
+
</table>
|
185 |
+
|
186 |
+
So you can see that teacache is not really lossless and sometimes can influence the result a lot.
|
187 |
+
|
188 |
+
We recommend using teacache to try ideas and then using the full diffusion process to get high-quality results.
|
189 |
+
|
190 |
+
This recommendation also applies to sage-attention, bnb quant, gguf, etc., etc.
|
191 |
+
|
192 |
+
## Image-to-1-minute
|
193 |
+
|
194 |
+
<img src="https://github.com/user-attachments/assets/820af6ca-3c2e-4bbc-afe8-9a9be1994ff5" width="150">
|
195 |
+
|
196 |
+
`The girl dances gracefully, with clear movements, full of charm.`
|
197 |
+
|
198 |
+

|
199 |
+
|
200 |
+
Set video length to 60 seconds:
|
201 |
+
|
202 |
+

|
203 |
+
|
204 |
+
If everything is in order you will get some result like this eventually.
|
205 |
+
|
206 |
+
60s version:
|
207 |
+
|
208 |
+
<table>
|
209 |
+
<tr>
|
210 |
+
<td align="center" width="300">
|
211 |
+
<video
|
212 |
+
src="https://github.com/user-attachments/assets/c3be4bde-2e33-4fd4-b76d-289a036d3a47"
|
213 |
+
controls
|
214 |
+
style="max-width:100%;">
|
215 |
+
</video>
|
216 |
+
</td>
|
217 |
+
</tr>
|
218 |
+
<tr>
|
219 |
+
<td align="center">
|
220 |
+
<em>Video may be compressed by GitHub</em>
|
221 |
+
</td>
|
222 |
+
</tr>
|
223 |
+
</table>
|
224 |
+
|
225 |
+
6s version:
|
226 |
+
|
227 |
+
<table>
|
228 |
+
<tr>
|
229 |
+
<td align="center" width="300">
|
230 |
+
<video
|
231 |
+
src="https://github.com/user-attachments/assets/37fe2c33-cb03-41e8-acca-920ab3e34861"
|
232 |
+
controls
|
233 |
+
style="max-width:100%;">
|
234 |
+
</video>
|
235 |
+
</td>
|
236 |
+
</tr>
|
237 |
+
<tr>
|
238 |
+
<td align="center">
|
239 |
+
<em>Video may be compressed by GitHub</em>
|
240 |
+
</td>
|
241 |
+
</tr>
|
242 |
+
</table>
|
243 |
+
|
244 |
+
# More Examples
|
245 |
+
|
246 |
+
Many more examples are in [**Project Page**](https://lllyasviel.github.io/frame_pack_gitpage/).
|
247 |
+
|
248 |
+
Below are some more examples that you may be interested in reproducing.
|
249 |
+
|
250 |
+
---
|
251 |
+
|
252 |
+
<img src="https://github.com/user-attachments/assets/99f4d281-28ad-44f5-8700-aa7a4e5638fa" width="150">
|
253 |
+
|
254 |
+
`The girl dances gracefully, with clear movements, full of charm.`
|
255 |
+
|
256 |
+

|
257 |
+
|
258 |
+
<table>
|
259 |
+
<tr>
|
260 |
+
<td align="center" width="300">
|
261 |
+
<video
|
262 |
+
src="https://github.com/user-attachments/assets/cebe178a-09ce-4b7a-8f3c-060332f4dab1"
|
263 |
+
controls
|
264 |
+
style="max-width:100%;">
|
265 |
+
</video>
|
266 |
+
</td>
|
267 |
+
</tr>
|
268 |
+
<tr>
|
269 |
+
<td align="center">
|
270 |
+
<em>Video may be compressed by GitHub</em>
|
271 |
+
</td>
|
272 |
+
</tr>
|
273 |
+
</table>
|
274 |
+
|
275 |
+
---
|
276 |
+
|
277 |
+
<img src="https://github.com/user-attachments/assets/853f4f40-2956-472f-aa7a-fa50da03ed92" width="150">
|
278 |
+
|
279 |
+
`The girl suddenly took out a sign that said “cute” using right hand`
|
280 |
+
|
281 |
+

|
282 |
+
|
283 |
+
<table>
|
284 |
+
<tr>
|
285 |
+
<td align="center" width="300">
|
286 |
+
<video
|
287 |
+
src="https://github.com/user-attachments/assets/116069d2-7499-4f38-ada7-8f85517d1fbb"
|
288 |
+
controls
|
289 |
+
style="max-width:100%;">
|
290 |
+
</video>
|
291 |
+
</td>
|
292 |
+
</tr>
|
293 |
+
<tr>
|
294 |
+
<td align="center">
|
295 |
+
<em>Video may be compressed by GitHub</em>
|
296 |
+
</td>
|
297 |
+
</tr>
|
298 |
+
</table>
|
299 |
+
|
300 |
+
---
|
301 |
+
|
302 |
+
<img src="https://github.com/user-attachments/assets/6d87c53f-81b2-4108-a704-697164ae2e81" width="150">
|
303 |
+
|
304 |
+
`The girl skateboarding, repeating the endless spinning and dancing and jumping on a skateboard, with clear movements, full of charm.`
|
305 |
+
|
306 |
+

|
307 |
+
|
308 |
+
<table>
|
309 |
+
<tr>
|
310 |
+
<td align="center" width="300">
|
311 |
+
<video
|
312 |
+
src="https://github.com/user-attachments/assets/d9e3534a-eb17-4af2-a8ed-8e692e9993d2"
|
313 |
+
controls
|
314 |
+
style="max-width:100%;">
|
315 |
+
</video>
|
316 |
+
</td>
|
317 |
+
</tr>
|
318 |
+
<tr>
|
319 |
+
<td align="center">
|
320 |
+
<em>Video may be compressed by GitHub</em>
|
321 |
+
</td>
|
322 |
+
</tr>
|
323 |
+
</table>
|
324 |
+
|
325 |
+
---
|
326 |
+
|
327 |
+
<img src="https://github.com/user-attachments/assets/6e95d1a5-9674-4c9a-97a9-ddf704159b79" width="150">
|
328 |
+
|
329 |
+
`The girl dances gracefully, with clear movements, full of charm.`
|
330 |
+
|
331 |
+

|
332 |
+
|
333 |
+
<table>
|
334 |
+
<tr>
|
335 |
+
<td align="center" width="300">
|
336 |
+
<video
|
337 |
+
src="https://github.com/user-attachments/assets/e1b3279e-e30d-4d32-b55f-2fb1d37c81d2"
|
338 |
+
controls
|
339 |
+
style="max-width:100%;">
|
340 |
+
</video>
|
341 |
+
</td>
|
342 |
+
</tr>
|
343 |
+
<tr>
|
344 |
+
<td align="center">
|
345 |
+
<em>Video may be compressed by GitHub</em>
|
346 |
+
</td>
|
347 |
+
</tr>
|
348 |
+
</table>
|
349 |
+
|
350 |
+
---
|
351 |
+
|
352 |
+
<img src="https://github.com/user-attachments/assets/90fc6d7e-8f6b-4f8c-a5df-ee5b1c8b63c9" width="150">
|
353 |
+
|
354 |
+
`The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair.`
|
355 |
+
|
356 |
+

|
357 |
+
|
358 |
+
<table>
|
359 |
+
<tr>
|
360 |
+
<td align="center" width="300">
|
361 |
+
<video
|
362 |
+
src="https://github.com/user-attachments/assets/aaa4481b-7bf8-4c64-bc32-909659767115"
|
363 |
+
controls
|
364 |
+
style="max-width:100%;">
|
365 |
+
</video>
|
366 |
+
</td>
|
367 |
+
</tr>
|
368 |
+
<tr>
|
369 |
+
<td align="center">
|
370 |
+
<em>Video may be compressed by GitHub</em>
|
371 |
+
</td>
|
372 |
+
</tr>
|
373 |
+
</table>
|
374 |
+
|
375 |
+
---
|
376 |
+
|
377 |
+
<img src="https://github.com/user-attachments/assets/62ecf987-ec0c-401d-b3c9-be9ffe84ee5b" width="150">
|
378 |
+
|
379 |
+
`The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements.`
|
380 |
+
|
381 |
+

|
382 |
+
|
383 |
+
|
384 |
+
<table>
|
385 |
+
<tr>
|
386 |
+
<td align="center" width="300">
|
387 |
+
<video
|
388 |
+
src="https://github.com/user-attachments/assets/f23f2f37-c9b8-45d5-a1be-7c87bd4b41cf"
|
389 |
+
controls
|
390 |
+
style="max-width:100%;">
|
391 |
+
</video>
|
392 |
+
</td>
|
393 |
+
</tr>
|
394 |
+
<tr>
|
395 |
+
<td align="center">
|
396 |
+
<em>Video may be compressed by GitHub</em>
|
397 |
+
</td>
|
398 |
+
</tr>
|
399 |
+
</table>
|
400 |
+
|
401 |
+
---
|
402 |
+
|
403 |
+
<img src="https://github.com/user-attachments/assets/4f740c1a-2d2f-40a6-9613-d6fe64c428aa" width="150">
|
404 |
+
|
405 |
+
`The young man writes intensely, flipping papers and adjusting his glasses with swift, focused movements.`
|
406 |
+
|
407 |
+

|
408 |
+
|
409 |
+
<table>
|
410 |
+
<tr>
|
411 |
+
<td align="center" width="300">
|
412 |
+
<video
|
413 |
+
src="https://github.com/user-attachments/assets/62e9910e-aea6-4b2b-9333-2e727bccfc64"
|
414 |
+
controls
|
415 |
+
style="max-width:100%;">
|
416 |
+
</video>
|
417 |
+
</td>
|
418 |
+
</tr>
|
419 |
+
<tr>
|
420 |
+
<td align="center">
|
421 |
+
<em>Video may be compressed by GitHub</em>
|
422 |
+
</td>
|
423 |
+
</tr>
|
424 |
+
</table>
|
425 |
+
|
426 |
+
---
|
427 |
+
|
428 |
+
# Prompting Guideline
|
429 |
+
|
430 |
+
Many people would ask how to write better prompts.
|
431 |
+
|
432 |
+
Below is a ChatGPT template that I personally often use to get prompts:
|
433 |
+
|
434 |
+
You are an assistant that writes short, motion-focused prompts for animating images.
|
435 |
+
|
436 |
+
When the user sends an image, respond with a single, concise prompt describing visual motion (such as human activity, moving objects, or camera movements). Focus only on how the scene could come alive and become dynamic using brief phrases.
|
437 |
+
|
438 |
+
Larger and more dynamic motions (like dancing, jumping, running, etc.) are preferred over smaller or more subtle ones (like standing still, sitting, etc.).
|
439 |
+
|
440 |
+
Describe subject, then motion, then other things. For example: "The girl dances gracefully, with clear movements, full of charm."
|
441 |
+
|
442 |
+
If there is something that can dance (like a man, girl, robot, etc.), then prefer to describe it as dancing.
|
443 |
+
|
444 |
+
Stay in a loop: one image in, one motion prompt out. Do not explain, ask questions, or generate multiple options.
|
445 |
+
|
446 |
+
You paste the instruct to ChatGPT and then feed it an image to get prompt like this:
|
447 |
+
|
448 |
+

|
449 |
+
|
450 |
+
*The man dances powerfully, striking sharp poses and gliding smoothly across the reflective floor.*
|
451 |
+
|
452 |
+
Usually this will give you a prompt that works well.
|
453 |
+
|
454 |
+
You can also write prompts yourself. Concise prompts are usually preferred, for example:
|
455 |
+
|
456 |
+
*The girl dances gracefully, with clear movements, full of charm.*
|
457 |
+
|
458 |
+
*The man dances powerfully, with clear movements, full of energy.*
|
459 |
+
|
460 |
+
and so on.
|
461 |
+
|
462 |
+
# Cite
|
463 |
+
|
464 |
+
@article{zhang2025framepack,
|
465 |
+
title={Packing Input Frame Contexts in Next-Frame Prediction Models for Video Generation},
|
466 |
+
author={Lvmin Zhang and Maneesh Agrawala},
|
467 |
+
journal={Arxiv},
|
468 |
+
year={2025}
|
469 |
+
}
|
demo_gradio.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers_helper.hf_login import login
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
import traceback
|
10 |
+
import einops
|
11 |
+
import safetensors.torch as sf
|
12 |
+
import numpy as np
|
13 |
+
import argparse
|
14 |
+
import math
|
15 |
+
|
16 |
+
from PIL import Image
|
17 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
18 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
19 |
+
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
20 |
+
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
21 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
22 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
23 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
24 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
25 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
26 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
27 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
28 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
29 |
+
|
30 |
+
|
31 |
+
parser = argparse.ArgumentParser()
|
32 |
+
parser.add_argument('--share', action='store_true')
|
33 |
+
parser.add_argument("--server", type=str, default='0.0.0.0')
|
34 |
+
parser.add_argument("--port", type=int, default=7860)
|
35 |
+
args = parser.parse_args()
|
36 |
+
|
37 |
+
print(args)
|
38 |
+
|
39 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
40 |
+
high_vram = free_mem_gb > 40
|
41 |
+
|
42 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
43 |
+
print(f'High-VRAM Mode: {high_vram}')
|
44 |
+
|
45 |
+
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
46 |
+
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
47 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
48 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
49 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
50 |
+
|
51 |
+
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
52 |
+
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
53 |
+
|
54 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
|
55 |
+
|
56 |
+
vae.eval()
|
57 |
+
text_encoder.eval()
|
58 |
+
text_encoder_2.eval()
|
59 |
+
image_encoder.eval()
|
60 |
+
transformer.eval()
|
61 |
+
|
62 |
+
if not high_vram:
|
63 |
+
vae.enable_slicing()
|
64 |
+
vae.enable_tiling()
|
65 |
+
|
66 |
+
transformer.high_quality_fp32_output_for_inference = True
|
67 |
+
print('transformer.high_quality_fp32_output_for_inference = True')
|
68 |
+
|
69 |
+
transformer.to(dtype=torch.bfloat16)
|
70 |
+
vae.to(dtype=torch.float16)
|
71 |
+
image_encoder.to(dtype=torch.float16)
|
72 |
+
text_encoder.to(dtype=torch.float16)
|
73 |
+
text_encoder_2.to(dtype=torch.float16)
|
74 |
+
|
75 |
+
vae.requires_grad_(False)
|
76 |
+
text_encoder.requires_grad_(False)
|
77 |
+
text_encoder_2.requires_grad_(False)
|
78 |
+
image_encoder.requires_grad_(False)
|
79 |
+
transformer.requires_grad_(False)
|
80 |
+
|
81 |
+
if not high_vram:
|
82 |
+
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
83 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
84 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
85 |
+
else:
|
86 |
+
text_encoder.to(gpu)
|
87 |
+
text_encoder_2.to(gpu)
|
88 |
+
image_encoder.to(gpu)
|
89 |
+
vae.to(gpu)
|
90 |
+
transformer.to(gpu)
|
91 |
+
|
92 |
+
stream = AsyncStream()
|
93 |
+
|
94 |
+
outputs_folder = './outputs/'
|
95 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
96 |
+
|
97 |
+
|
98 |
+
@torch.no_grad()
|
99 |
+
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
100 |
+
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
101 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
102 |
+
|
103 |
+
job_id = generate_timestamp()
|
104 |
+
|
105 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
106 |
+
|
107 |
+
try:
|
108 |
+
# Clean GPU
|
109 |
+
if not high_vram:
|
110 |
+
unload_complete_models(
|
111 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
112 |
+
)
|
113 |
+
|
114 |
+
# Text encoding
|
115 |
+
|
116 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
117 |
+
|
118 |
+
if not high_vram:
|
119 |
+
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
120 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
121 |
+
|
122 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
123 |
+
|
124 |
+
if cfg == 1:
|
125 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
126 |
+
else:
|
127 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
128 |
+
|
129 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
130 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
131 |
+
|
132 |
+
# Processing input image
|
133 |
+
|
134 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
135 |
+
|
136 |
+
H, W, C = input_image.shape
|
137 |
+
height, width = find_nearest_bucket(H, W, resolution=640)
|
138 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
139 |
+
|
140 |
+
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
141 |
+
|
142 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
143 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
144 |
+
|
145 |
+
# VAE encoding
|
146 |
+
|
147 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
148 |
+
|
149 |
+
if not high_vram:
|
150 |
+
load_model_as_complete(vae, target_device=gpu)
|
151 |
+
|
152 |
+
start_latent = vae_encode(input_image_pt, vae)
|
153 |
+
|
154 |
+
# CLIP Vision
|
155 |
+
|
156 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
157 |
+
|
158 |
+
if not high_vram:
|
159 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
160 |
+
|
161 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
162 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
163 |
+
|
164 |
+
# Dtype
|
165 |
+
|
166 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
167 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
168 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
169 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
170 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
171 |
+
|
172 |
+
# Sampling
|
173 |
+
|
174 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
175 |
+
|
176 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
177 |
+
num_frames = latent_window_size * 4 - 3
|
178 |
+
|
179 |
+
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
|
180 |
+
history_pixels = None
|
181 |
+
total_generated_latent_frames = 0
|
182 |
+
|
183 |
+
latent_paddings = reversed(range(total_latent_sections))
|
184 |
+
|
185 |
+
if total_latent_sections > 4:
|
186 |
+
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
|
187 |
+
# items looks better than expanding it when total_latent_sections > 4
|
188 |
+
# One can try to remove below trick and just
|
189 |
+
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
|
190 |
+
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
|
191 |
+
|
192 |
+
for latent_padding in latent_paddings:
|
193 |
+
is_last_section = latent_padding == 0
|
194 |
+
latent_padding_size = latent_padding * latent_window_size
|
195 |
+
|
196 |
+
if stream.input_queue.top() == 'end':
|
197 |
+
stream.output_queue.push(('end', None))
|
198 |
+
return
|
199 |
+
|
200 |
+
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
|
201 |
+
|
202 |
+
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
|
203 |
+
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
|
204 |
+
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
205 |
+
|
206 |
+
clean_latents_pre = start_latent.to(history_latents)
|
207 |
+
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
|
208 |
+
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
209 |
+
|
210 |
+
if not high_vram:
|
211 |
+
unload_complete_models()
|
212 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
213 |
+
|
214 |
+
if use_teacache:
|
215 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
216 |
+
else:
|
217 |
+
transformer.initialize_teacache(enable_teacache=False)
|
218 |
+
|
219 |
+
def callback(d):
|
220 |
+
preview = d['denoised']
|
221 |
+
preview = vae_decode_fake(preview)
|
222 |
+
|
223 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
224 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
225 |
+
|
226 |
+
if stream.input_queue.top() == 'end':
|
227 |
+
stream.output_queue.push(('end', None))
|
228 |
+
raise KeyboardInterrupt('User ends the task.')
|
229 |
+
|
230 |
+
current_step = d['i'] + 1
|
231 |
+
percentage = int(100.0 * current_step / steps)
|
232 |
+
hint = f'Sampling {current_step}/{steps}'
|
233 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
|
234 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
235 |
+
return
|
236 |
+
|
237 |
+
generated_latents = sample_hunyuan(
|
238 |
+
transformer=transformer,
|
239 |
+
sampler='unipc',
|
240 |
+
width=width,
|
241 |
+
height=height,
|
242 |
+
frames=num_frames,
|
243 |
+
real_guidance_scale=cfg,
|
244 |
+
distilled_guidance_scale=gs,
|
245 |
+
guidance_rescale=rs,
|
246 |
+
# shift=3.0,
|
247 |
+
num_inference_steps=steps,
|
248 |
+
generator=rnd,
|
249 |
+
prompt_embeds=llama_vec,
|
250 |
+
prompt_embeds_mask=llama_attention_mask,
|
251 |
+
prompt_poolers=clip_l_pooler,
|
252 |
+
negative_prompt_embeds=llama_vec_n,
|
253 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
254 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
255 |
+
device=gpu,
|
256 |
+
dtype=torch.bfloat16,
|
257 |
+
image_embeddings=image_encoder_last_hidden_state,
|
258 |
+
latent_indices=latent_indices,
|
259 |
+
clean_latents=clean_latents,
|
260 |
+
clean_latent_indices=clean_latent_indices,
|
261 |
+
clean_latents_2x=clean_latents_2x,
|
262 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
263 |
+
clean_latents_4x=clean_latents_4x,
|
264 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
265 |
+
callback=callback,
|
266 |
+
)
|
267 |
+
|
268 |
+
if is_last_section:
|
269 |
+
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
|
270 |
+
|
271 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
272 |
+
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
273 |
+
|
274 |
+
if not high_vram:
|
275 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
276 |
+
load_model_as_complete(vae, target_device=gpu)
|
277 |
+
|
278 |
+
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
|
279 |
+
|
280 |
+
if history_pixels is None:
|
281 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
282 |
+
else:
|
283 |
+
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
|
284 |
+
overlapped_frames = latent_window_size * 4 - 3
|
285 |
+
|
286 |
+
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
287 |
+
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
288 |
+
|
289 |
+
if not high_vram:
|
290 |
+
unload_complete_models()
|
291 |
+
|
292 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
293 |
+
|
294 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
295 |
+
|
296 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
297 |
+
|
298 |
+
stream.output_queue.push(('file', output_filename))
|
299 |
+
|
300 |
+
if is_last_section:
|
301 |
+
break
|
302 |
+
except:
|
303 |
+
traceback.print_exc()
|
304 |
+
|
305 |
+
if not high_vram:
|
306 |
+
unload_complete_models(
|
307 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
308 |
+
)
|
309 |
+
|
310 |
+
stream.output_queue.push(('end', None))
|
311 |
+
return
|
312 |
+
|
313 |
+
|
314 |
+
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
315 |
+
global stream
|
316 |
+
assert input_image is not None, 'No input image!'
|
317 |
+
|
318 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
319 |
+
|
320 |
+
stream = AsyncStream()
|
321 |
+
|
322 |
+
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
|
323 |
+
|
324 |
+
output_filename = None
|
325 |
+
|
326 |
+
while True:
|
327 |
+
flag, data = stream.output_queue.next()
|
328 |
+
|
329 |
+
if flag == 'file':
|
330 |
+
output_filename = data
|
331 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
332 |
+
|
333 |
+
if flag == 'progress':
|
334 |
+
preview, desc, html = data
|
335 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
336 |
+
|
337 |
+
if flag == 'end':
|
338 |
+
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
339 |
+
break
|
340 |
+
|
341 |
+
|
342 |
+
def end_process():
|
343 |
+
stream.input_queue.push('end')
|
344 |
+
|
345 |
+
|
346 |
+
quick_prompts = [
|
347 |
+
'The girl dances gracefully, with clear movements, full of charm.',
|
348 |
+
'A character doing some simple body movements.',
|
349 |
+
]
|
350 |
+
quick_prompts = [[x] for x in quick_prompts]
|
351 |
+
|
352 |
+
|
353 |
+
css = make_progress_bar_css()
|
354 |
+
block = gr.Blocks(css=css).queue()
|
355 |
+
with block:
|
356 |
+
gr.Markdown('# FramePack')
|
357 |
+
with gr.Row():
|
358 |
+
with gr.Column():
|
359 |
+
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
360 |
+
prompt = gr.Textbox(label="Prompt", value='')
|
361 |
+
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
|
362 |
+
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
363 |
+
|
364 |
+
with gr.Row():
|
365 |
+
start_button = gr.Button(value="Start Generation")
|
366 |
+
end_button = gr.Button(value="End Generation", interactive=False)
|
367 |
+
|
368 |
+
with gr.Group():
|
369 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
|
370 |
+
|
371 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
|
372 |
+
seed = gr.Number(label="Seed", value=31337, precision=0)
|
373 |
+
|
374 |
+
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
|
375 |
+
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
|
376 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
|
377 |
+
|
378 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
|
379 |
+
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
|
380 |
+
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
|
381 |
+
|
382 |
+
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
383 |
+
|
384 |
+
with gr.Column():
|
385 |
+
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
386 |
+
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
387 |
+
gr.Markdown('Note that the ending actions will be generated before the starting actions due to the inverted sampling. If the starting action is not in the video, you just need to wait, and it will be generated later.')
|
388 |
+
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
389 |
+
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
390 |
+
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
|
391 |
+
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
392 |
+
end_button.click(fn=end_process)
|
393 |
+
|
394 |
+
|
395 |
+
block.launch(
|
396 |
+
server_name=args.server,
|
397 |
+
server_port=args.port,
|
398 |
+
share=args.share,
|
399 |
+
)
|
diffusers_helper/bucket_tools.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bucket_options = {
|
2 |
+
640: [
|
3 |
+
(416, 960),
|
4 |
+
(448, 864),
|
5 |
+
(480, 832),
|
6 |
+
(512, 768),
|
7 |
+
(544, 704),
|
8 |
+
(576, 672),
|
9 |
+
(608, 640),
|
10 |
+
(640, 608),
|
11 |
+
(672, 576),
|
12 |
+
(704, 544),
|
13 |
+
(768, 512),
|
14 |
+
(832, 480),
|
15 |
+
(864, 448),
|
16 |
+
(960, 416),
|
17 |
+
],
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
def find_nearest_bucket(h, w, resolution=640):
|
22 |
+
min_metric = float('inf')
|
23 |
+
best_bucket = None
|
24 |
+
for (bucket_h, bucket_w) in bucket_options[resolution]:
|
25 |
+
metric = abs(h * bucket_w - w * bucket_h)
|
26 |
+
if metric <= min_metric:
|
27 |
+
min_metric = metric
|
28 |
+
best_bucket = (bucket_h, bucket_w)
|
29 |
+
return best_bucket
|
30 |
+
|
diffusers_helper/clip_vision.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def hf_clip_vision_encode(image, feature_extractor, image_encoder):
|
5 |
+
assert isinstance(image, np.ndarray)
|
6 |
+
assert image.ndim == 3 and image.shape[2] == 3
|
7 |
+
assert image.dtype == np.uint8
|
8 |
+
|
9 |
+
preprocessed = feature_extractor.preprocess(images=image, return_tensors="pt").to(device=image_encoder.device, dtype=image_encoder.dtype)
|
10 |
+
image_encoder_output = image_encoder(**preprocessed)
|
11 |
+
|
12 |
+
return image_encoder_output
|
diffusers_helper/dit_common.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import accelerate.accelerator
|
3 |
+
|
4 |
+
from diffusers.models.normalization import RMSNorm, LayerNorm, FP32LayerNorm, AdaLayerNormContinuous
|
5 |
+
|
6 |
+
|
7 |
+
accelerate.accelerator.convert_outputs_to_fp32 = lambda x: x
|
8 |
+
|
9 |
+
|
10 |
+
def LayerNorm_forward(self, x):
|
11 |
+
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x)
|
12 |
+
|
13 |
+
|
14 |
+
LayerNorm.forward = LayerNorm_forward
|
15 |
+
torch.nn.LayerNorm.forward = LayerNorm_forward
|
16 |
+
|
17 |
+
|
18 |
+
def FP32LayerNorm_forward(self, x):
|
19 |
+
origin_dtype = x.dtype
|
20 |
+
return torch.nn.functional.layer_norm(
|
21 |
+
x.float(),
|
22 |
+
self.normalized_shape,
|
23 |
+
self.weight.float() if self.weight is not None else None,
|
24 |
+
self.bias.float() if self.bias is not None else None,
|
25 |
+
self.eps,
|
26 |
+
).to(origin_dtype)
|
27 |
+
|
28 |
+
|
29 |
+
FP32LayerNorm.forward = FP32LayerNorm_forward
|
30 |
+
|
31 |
+
|
32 |
+
def RMSNorm_forward(self, hidden_states):
|
33 |
+
input_dtype = hidden_states.dtype
|
34 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
35 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
36 |
+
|
37 |
+
if self.weight is None:
|
38 |
+
return hidden_states.to(input_dtype)
|
39 |
+
|
40 |
+
return hidden_states.to(input_dtype) * self.weight.to(input_dtype)
|
41 |
+
|
42 |
+
|
43 |
+
RMSNorm.forward = RMSNorm_forward
|
44 |
+
|
45 |
+
|
46 |
+
def AdaLayerNormContinuous_forward(self, x, conditioning_embedding):
|
47 |
+
emb = self.linear(self.silu(conditioning_embedding))
|
48 |
+
scale, shift = emb.chunk(2, dim=1)
|
49 |
+
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
AdaLayerNormContinuous.forward = AdaLayerNormContinuous_forward
|
diffusers_helper/gradio/progress_bar.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
progress_html = '''
|
2 |
+
<div class="loader-container">
|
3 |
+
<div class="loader"></div>
|
4 |
+
<div class="progress-container">
|
5 |
+
<progress value="*number*" max="100"></progress>
|
6 |
+
</div>
|
7 |
+
<span>*text*</span>
|
8 |
+
</div>
|
9 |
+
'''
|
10 |
+
|
11 |
+
css = '''
|
12 |
+
.loader-container {
|
13 |
+
display: flex; /* Use flex to align items horizontally */
|
14 |
+
align-items: center; /* Center items vertically within the container */
|
15 |
+
white-space: nowrap; /* Prevent line breaks within the container */
|
16 |
+
}
|
17 |
+
|
18 |
+
.loader {
|
19 |
+
border: 8px solid #f3f3f3; /* Light grey */
|
20 |
+
border-top: 8px solid #3498db; /* Blue */
|
21 |
+
border-radius: 50%;
|
22 |
+
width: 30px;
|
23 |
+
height: 30px;
|
24 |
+
animation: spin 2s linear infinite;
|
25 |
+
}
|
26 |
+
|
27 |
+
@keyframes spin {
|
28 |
+
0% { transform: rotate(0deg); }
|
29 |
+
100% { transform: rotate(360deg); }
|
30 |
+
}
|
31 |
+
|
32 |
+
/* Style the progress bar */
|
33 |
+
progress {
|
34 |
+
appearance: none; /* Remove default styling */
|
35 |
+
height: 20px; /* Set the height of the progress bar */
|
36 |
+
border-radius: 5px; /* Round the corners of the progress bar */
|
37 |
+
background-color: #f3f3f3; /* Light grey background */
|
38 |
+
width: 100%;
|
39 |
+
vertical-align: middle !important;
|
40 |
+
}
|
41 |
+
|
42 |
+
/* Style the progress bar container */
|
43 |
+
.progress-container {
|
44 |
+
margin-left: 20px;
|
45 |
+
margin-right: 20px;
|
46 |
+
flex-grow: 1; /* Allow the progress container to take up remaining space */
|
47 |
+
}
|
48 |
+
|
49 |
+
/* Set the color of the progress bar fill */
|
50 |
+
progress::-webkit-progress-value {
|
51 |
+
background-color: #3498db; /* Blue color for the fill */
|
52 |
+
}
|
53 |
+
|
54 |
+
progress::-moz-progress-bar {
|
55 |
+
background-color: #3498db; /* Blue color for the fill in Firefox */
|
56 |
+
}
|
57 |
+
|
58 |
+
/* Style the text on the progress bar */
|
59 |
+
progress::after {
|
60 |
+
content: attr(value '%'); /* Display the progress value followed by '%' */
|
61 |
+
position: absolute;
|
62 |
+
top: 50%;
|
63 |
+
left: 50%;
|
64 |
+
transform: translate(-50%, -50%);
|
65 |
+
color: white; /* Set text color */
|
66 |
+
font-size: 14px; /* Set font size */
|
67 |
+
}
|
68 |
+
|
69 |
+
/* Style other texts */
|
70 |
+
.loader-container > span {
|
71 |
+
margin-left: 5px; /* Add spacing between the progress bar and the text */
|
72 |
+
}
|
73 |
+
|
74 |
+
.no-generating-animation > .generating {
|
75 |
+
display: none !important;
|
76 |
+
}
|
77 |
+
|
78 |
+
'''
|
79 |
+
|
80 |
+
|
81 |
+
def make_progress_bar_html(number, text):
|
82 |
+
return progress_html.replace('*number*', str(number)).replace('*text*', text)
|
83 |
+
|
84 |
+
|
85 |
+
def make_progress_bar_css():
|
86 |
+
return css
|
diffusers_helper/hf_login.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
def login(token):
|
5 |
+
from huggingface_hub import login
|
6 |
+
import time
|
7 |
+
|
8 |
+
while True:
|
9 |
+
try:
|
10 |
+
login(token)
|
11 |
+
print('HF login ok.')
|
12 |
+
break
|
13 |
+
except Exception as e:
|
14 |
+
print(f'HF login failed: {e}. Retrying')
|
15 |
+
time.sleep(0.5)
|
16 |
+
|
17 |
+
|
18 |
+
hf_token = os.environ.get('HF_TOKEN', None)
|
19 |
+
|
20 |
+
if hf_token is not None:
|
21 |
+
login(hf_token)
|
diffusers_helper/hunyuan.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
|
4 |
+
from diffusers_helper.utils import crop_or_pad_yield_mask
|
5 |
+
|
6 |
+
|
7 |
+
@torch.no_grad()
|
8 |
+
def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
|
9 |
+
assert isinstance(prompt, str)
|
10 |
+
|
11 |
+
prompt = [prompt]
|
12 |
+
|
13 |
+
# LLAMA
|
14 |
+
|
15 |
+
prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
|
16 |
+
crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
|
17 |
+
|
18 |
+
llama_inputs = tokenizer(
|
19 |
+
prompt_llama,
|
20 |
+
padding="max_length",
|
21 |
+
max_length=max_length + crop_start,
|
22 |
+
truncation=True,
|
23 |
+
return_tensors="pt",
|
24 |
+
return_length=False,
|
25 |
+
return_overflowing_tokens=False,
|
26 |
+
return_attention_mask=True,
|
27 |
+
)
|
28 |
+
|
29 |
+
llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
|
30 |
+
llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
|
31 |
+
llama_attention_length = int(llama_attention_mask.sum())
|
32 |
+
|
33 |
+
llama_outputs = text_encoder(
|
34 |
+
input_ids=llama_input_ids,
|
35 |
+
attention_mask=llama_attention_mask,
|
36 |
+
output_hidden_states=True,
|
37 |
+
)
|
38 |
+
|
39 |
+
llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
|
40 |
+
# llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
|
41 |
+
llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
|
42 |
+
|
43 |
+
assert torch.all(llama_attention_mask.bool())
|
44 |
+
|
45 |
+
# CLIP
|
46 |
+
|
47 |
+
clip_l_input_ids = tokenizer_2(
|
48 |
+
prompt,
|
49 |
+
padding="max_length",
|
50 |
+
max_length=77,
|
51 |
+
truncation=True,
|
52 |
+
return_overflowing_tokens=False,
|
53 |
+
return_length=False,
|
54 |
+
return_tensors="pt",
|
55 |
+
).input_ids
|
56 |
+
clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
|
57 |
+
|
58 |
+
return llama_vec, clip_l_pooler
|
59 |
+
|
60 |
+
|
61 |
+
@torch.no_grad()
|
62 |
+
def vae_decode_fake(latents):
|
63 |
+
latent_rgb_factors = [
|
64 |
+
[-0.0395, -0.0331, 0.0445],
|
65 |
+
[0.0696, 0.0795, 0.0518],
|
66 |
+
[0.0135, -0.0945, -0.0282],
|
67 |
+
[0.0108, -0.0250, -0.0765],
|
68 |
+
[-0.0209, 0.0032, 0.0224],
|
69 |
+
[-0.0804, -0.0254, -0.0639],
|
70 |
+
[-0.0991, 0.0271, -0.0669],
|
71 |
+
[-0.0646, -0.0422, -0.0400],
|
72 |
+
[-0.0696, -0.0595, -0.0894],
|
73 |
+
[-0.0799, -0.0208, -0.0375],
|
74 |
+
[0.1166, 0.1627, 0.0962],
|
75 |
+
[0.1165, 0.0432, 0.0407],
|
76 |
+
[-0.2315, -0.1920, -0.1355],
|
77 |
+
[-0.0270, 0.0401, -0.0821],
|
78 |
+
[-0.0616, -0.0997, -0.0727],
|
79 |
+
[0.0249, -0.0469, -0.1703]
|
80 |
+
] # From comfyui
|
81 |
+
|
82 |
+
latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
|
83 |
+
|
84 |
+
weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
|
85 |
+
bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
|
86 |
+
|
87 |
+
images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
|
88 |
+
images = images.clamp(0.0, 1.0)
|
89 |
+
|
90 |
+
return images
|
91 |
+
|
92 |
+
|
93 |
+
@torch.no_grad()
|
94 |
+
def vae_decode(latents, vae, image_mode=False):
|
95 |
+
latents = latents / vae.config.scaling_factor
|
96 |
+
|
97 |
+
if not image_mode:
|
98 |
+
image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
|
99 |
+
else:
|
100 |
+
latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
|
101 |
+
image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
|
102 |
+
image = torch.cat(image, dim=2)
|
103 |
+
|
104 |
+
return image
|
105 |
+
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def vae_encode(image, vae):
|
109 |
+
latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
|
110 |
+
latents = latents * vae.config.scaling_factor
|
111 |
+
return latents
|
diffusers_helper/k_diffusion/uni_pc_fm.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Better Flow Matching UniPC by Lvmin Zhang
|
2 |
+
# (c) 2025
|
3 |
+
# CC BY-SA 4.0
|
4 |
+
# Attribution-ShareAlike 4.0 International Licence
|
5 |
+
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from tqdm.auto import trange
|
10 |
+
|
11 |
+
|
12 |
+
def expand_dims(v, dims):
|
13 |
+
return v[(...,) + (None,) * (dims - 1)]
|
14 |
+
|
15 |
+
|
16 |
+
class FlowMatchUniPC:
|
17 |
+
def __init__(self, model, extra_args, variant='bh1'):
|
18 |
+
self.model = model
|
19 |
+
self.variant = variant
|
20 |
+
self.extra_args = extra_args
|
21 |
+
|
22 |
+
def model_fn(self, x, t):
|
23 |
+
return self.model(x, t, **self.extra_args)
|
24 |
+
|
25 |
+
def update_fn(self, x, model_prev_list, t_prev_list, t, order):
|
26 |
+
assert order <= len(model_prev_list)
|
27 |
+
dims = x.dim()
|
28 |
+
|
29 |
+
t_prev_0 = t_prev_list[-1]
|
30 |
+
lambda_prev_0 = - torch.log(t_prev_0)
|
31 |
+
lambda_t = - torch.log(t)
|
32 |
+
model_prev_0 = model_prev_list[-1]
|
33 |
+
|
34 |
+
h = lambda_t - lambda_prev_0
|
35 |
+
|
36 |
+
rks = []
|
37 |
+
D1s = []
|
38 |
+
for i in range(1, order):
|
39 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
40 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
41 |
+
lambda_prev_i = - torch.log(t_prev_i)
|
42 |
+
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
43 |
+
rks.append(rk)
|
44 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
45 |
+
|
46 |
+
rks.append(1.)
|
47 |
+
rks = torch.tensor(rks, device=x.device)
|
48 |
+
|
49 |
+
R = []
|
50 |
+
b = []
|
51 |
+
|
52 |
+
hh = -h[0]
|
53 |
+
h_phi_1 = torch.expm1(hh)
|
54 |
+
h_phi_k = h_phi_1 / hh - 1
|
55 |
+
|
56 |
+
factorial_i = 1
|
57 |
+
|
58 |
+
if self.variant == 'bh1':
|
59 |
+
B_h = hh
|
60 |
+
elif self.variant == 'bh2':
|
61 |
+
B_h = torch.expm1(hh)
|
62 |
+
else:
|
63 |
+
raise NotImplementedError('Bad variant!')
|
64 |
+
|
65 |
+
for i in range(1, order + 1):
|
66 |
+
R.append(torch.pow(rks, i - 1))
|
67 |
+
b.append(h_phi_k * factorial_i / B_h)
|
68 |
+
factorial_i *= (i + 1)
|
69 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
70 |
+
|
71 |
+
R = torch.stack(R)
|
72 |
+
b = torch.tensor(b, device=x.device)
|
73 |
+
|
74 |
+
use_predictor = len(D1s) > 0
|
75 |
+
|
76 |
+
if use_predictor:
|
77 |
+
D1s = torch.stack(D1s, dim=1)
|
78 |
+
if order == 2:
|
79 |
+
rhos_p = torch.tensor([0.5], device=b.device)
|
80 |
+
else:
|
81 |
+
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
82 |
+
else:
|
83 |
+
D1s = None
|
84 |
+
rhos_p = None
|
85 |
+
|
86 |
+
if order == 1:
|
87 |
+
rhos_c = torch.tensor([0.5], device=b.device)
|
88 |
+
else:
|
89 |
+
rhos_c = torch.linalg.solve(R, b)
|
90 |
+
|
91 |
+
x_t_ = expand_dims(t / t_prev_0, dims) * x - expand_dims(h_phi_1, dims) * model_prev_0
|
92 |
+
|
93 |
+
if use_predictor:
|
94 |
+
pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0]))
|
95 |
+
else:
|
96 |
+
pred_res = 0
|
97 |
+
|
98 |
+
x_t = x_t_ - expand_dims(B_h, dims) * pred_res
|
99 |
+
model_t = self.model_fn(x_t, t)
|
100 |
+
|
101 |
+
if D1s is not None:
|
102 |
+
corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0]))
|
103 |
+
else:
|
104 |
+
corr_res = 0
|
105 |
+
|
106 |
+
D1_t = (model_t - model_prev_0)
|
107 |
+
x_t = x_t_ - expand_dims(B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
108 |
+
|
109 |
+
return x_t, model_t
|
110 |
+
|
111 |
+
def sample(self, x, sigmas, callback=None, disable_pbar=False):
|
112 |
+
order = min(3, len(sigmas) - 2)
|
113 |
+
model_prev_list, t_prev_list = [], []
|
114 |
+
for i in trange(len(sigmas) - 1, disable=disable_pbar):
|
115 |
+
vec_t = sigmas[i].expand(x.shape[0])
|
116 |
+
|
117 |
+
if i == 0:
|
118 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
119 |
+
t_prev_list = [vec_t]
|
120 |
+
elif i < order:
|
121 |
+
init_order = i
|
122 |
+
x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, init_order)
|
123 |
+
model_prev_list.append(model_x)
|
124 |
+
t_prev_list.append(vec_t)
|
125 |
+
else:
|
126 |
+
x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, order)
|
127 |
+
model_prev_list.append(model_x)
|
128 |
+
t_prev_list.append(vec_t)
|
129 |
+
|
130 |
+
model_prev_list = model_prev_list[-order:]
|
131 |
+
t_prev_list = t_prev_list[-order:]
|
132 |
+
|
133 |
+
if callback is not None:
|
134 |
+
callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]})
|
135 |
+
|
136 |
+
return model_prev_list[-1]
|
137 |
+
|
138 |
+
|
139 |
+
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
|
140 |
+
assert variant in ['bh1', 'bh2']
|
141 |
+
return FlowMatchUniPC(model, extra_args=extra_args, variant=variant).sample(noise, sigmas=sigmas, callback=callback, disable_pbar=disable)
|
diffusers_helper/k_diffusion/wrapper.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def append_dims(x, target_dims):
|
5 |
+
return x[(...,) + (None,) * (target_dims - x.ndim)]
|
6 |
+
|
7 |
+
|
8 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=1.0):
|
9 |
+
if guidance_rescale == 0:
|
10 |
+
return noise_cfg
|
11 |
+
|
12 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
13 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
14 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
15 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1.0 - guidance_rescale) * noise_cfg
|
16 |
+
return noise_cfg
|
17 |
+
|
18 |
+
|
19 |
+
def fm_wrapper(transformer, t_scale=1000.0):
|
20 |
+
def k_model(x, sigma, **extra_args):
|
21 |
+
dtype = extra_args['dtype']
|
22 |
+
cfg_scale = extra_args['cfg_scale']
|
23 |
+
cfg_rescale = extra_args['cfg_rescale']
|
24 |
+
concat_latent = extra_args['concat_latent']
|
25 |
+
|
26 |
+
original_dtype = x.dtype
|
27 |
+
sigma = sigma.float()
|
28 |
+
|
29 |
+
x = x.to(dtype)
|
30 |
+
timestep = (sigma * t_scale).to(dtype)
|
31 |
+
|
32 |
+
if concat_latent is None:
|
33 |
+
hidden_states = x
|
34 |
+
else:
|
35 |
+
hidden_states = torch.cat([x, concat_latent.to(x)], dim=1)
|
36 |
+
|
37 |
+
pred_positive = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['positive'])[0].float()
|
38 |
+
|
39 |
+
if cfg_scale == 1.0:
|
40 |
+
pred_negative = torch.zeros_like(pred_positive)
|
41 |
+
else:
|
42 |
+
pred_negative = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['negative'])[0].float()
|
43 |
+
|
44 |
+
pred_cfg = pred_negative + cfg_scale * (pred_positive - pred_negative)
|
45 |
+
pred = rescale_noise_cfg(pred_cfg, pred_positive, guidance_rescale=cfg_rescale)
|
46 |
+
|
47 |
+
x0 = x.float() - pred.float() * append_dims(sigma, x.ndim)
|
48 |
+
|
49 |
+
return x0.to(dtype=original_dtype)
|
50 |
+
|
51 |
+
return k_model
|
diffusers_helper/memory.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# By lllyasviel
|
2 |
+
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
cpu = torch.device('cpu')
|
8 |
+
gpu = torch.device(f'cuda:{torch.cuda.current_device()}')
|
9 |
+
gpu_complete_modules = []
|
10 |
+
|
11 |
+
|
12 |
+
class DynamicSwapInstaller:
|
13 |
+
@staticmethod
|
14 |
+
def _install_module(module: torch.nn.Module, **kwargs):
|
15 |
+
original_class = module.__class__
|
16 |
+
module.__dict__['forge_backup_original_class'] = original_class
|
17 |
+
|
18 |
+
def hacked_get_attr(self, name: str):
|
19 |
+
if '_parameters' in self.__dict__:
|
20 |
+
_parameters = self.__dict__['_parameters']
|
21 |
+
if name in _parameters:
|
22 |
+
p = _parameters[name]
|
23 |
+
if p is None:
|
24 |
+
return None
|
25 |
+
if p.__class__ == torch.nn.Parameter:
|
26 |
+
return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad)
|
27 |
+
else:
|
28 |
+
return p.to(**kwargs)
|
29 |
+
if '_buffers' in self.__dict__:
|
30 |
+
_buffers = self.__dict__['_buffers']
|
31 |
+
if name in _buffers:
|
32 |
+
return _buffers[name].to(**kwargs)
|
33 |
+
return super(original_class, self).__getattr__(name)
|
34 |
+
|
35 |
+
module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
|
36 |
+
'__getattr__': hacked_get_attr,
|
37 |
+
})
|
38 |
+
|
39 |
+
return
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def _uninstall_module(module: torch.nn.Module):
|
43 |
+
if 'forge_backup_original_class' in module.__dict__:
|
44 |
+
module.__class__ = module.__dict__.pop('forge_backup_original_class')
|
45 |
+
return
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def install_model(model: torch.nn.Module, **kwargs):
|
49 |
+
for m in model.modules():
|
50 |
+
DynamicSwapInstaller._install_module(m, **kwargs)
|
51 |
+
return
|
52 |
+
|
53 |
+
@staticmethod
|
54 |
+
def uninstall_model(model: torch.nn.Module):
|
55 |
+
for m in model.modules():
|
56 |
+
DynamicSwapInstaller._uninstall_module(m)
|
57 |
+
return
|
58 |
+
|
59 |
+
|
60 |
+
def fake_diffusers_current_device(model: torch.nn.Module, target_device: torch.device):
|
61 |
+
if hasattr(model, 'scale_shift_table'):
|
62 |
+
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
|
63 |
+
return
|
64 |
+
|
65 |
+
for k, p in model.named_modules():
|
66 |
+
if hasattr(p, 'weight'):
|
67 |
+
p.to(target_device)
|
68 |
+
return
|
69 |
+
|
70 |
+
|
71 |
+
def get_cuda_free_memory_gb(device=None):
|
72 |
+
if device is None:
|
73 |
+
device = gpu
|
74 |
+
|
75 |
+
memory_stats = torch.cuda.memory_stats(device)
|
76 |
+
bytes_active = memory_stats['active_bytes.all.current']
|
77 |
+
bytes_reserved = memory_stats['reserved_bytes.all.current']
|
78 |
+
bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
|
79 |
+
bytes_inactive_reserved = bytes_reserved - bytes_active
|
80 |
+
bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
|
81 |
+
return bytes_total_available / (1024 ** 3)
|
82 |
+
|
83 |
+
|
84 |
+
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
|
85 |
+
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
|
86 |
+
|
87 |
+
for m in model.modules():
|
88 |
+
if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
|
89 |
+
torch.cuda.empty_cache()
|
90 |
+
return
|
91 |
+
|
92 |
+
if hasattr(m, 'weight'):
|
93 |
+
m.to(device=target_device)
|
94 |
+
|
95 |
+
model.to(device=target_device)
|
96 |
+
torch.cuda.empty_cache()
|
97 |
+
return
|
98 |
+
|
99 |
+
|
100 |
+
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
|
101 |
+
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
|
102 |
+
|
103 |
+
for m in model.modules():
|
104 |
+
if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
|
105 |
+
torch.cuda.empty_cache()
|
106 |
+
return
|
107 |
+
|
108 |
+
if hasattr(m, 'weight'):
|
109 |
+
m.to(device=cpu)
|
110 |
+
|
111 |
+
model.to(device=cpu)
|
112 |
+
torch.cuda.empty_cache()
|
113 |
+
return
|
114 |
+
|
115 |
+
|
116 |
+
def unload_complete_models(*args):
|
117 |
+
for m in gpu_complete_modules + list(args):
|
118 |
+
m.to(device=cpu)
|
119 |
+
print(f'Unloaded {m.__class__.__name__} as complete.')
|
120 |
+
|
121 |
+
gpu_complete_modules.clear()
|
122 |
+
torch.cuda.empty_cache()
|
123 |
+
return
|
124 |
+
|
125 |
+
|
126 |
+
def load_model_as_complete(model, target_device, unload=True):
|
127 |
+
if unload:
|
128 |
+
unload_complete_models()
|
129 |
+
|
130 |
+
model.to(device=target_device)
|
131 |
+
print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
|
132 |
+
|
133 |
+
gpu_complete_modules.append(model)
|
134 |
+
return
|
diffusers_helper/models/hunyuan_video_packed.py
ADDED
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import einops
|
5 |
+
import torch.nn as nn
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from diffusers.loaders import FromOriginalModelMixin
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
from diffusers.loaders import PeftAdapterMixin
|
11 |
+
from diffusers.utils import logging
|
12 |
+
from diffusers.models.attention import FeedForward
|
13 |
+
from diffusers.models.attention_processor import Attention
|
14 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
|
15 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
16 |
+
from diffusers.models.modeling_utils import ModelMixin
|
17 |
+
from diffusers_helper.dit_common import LayerNorm
|
18 |
+
from diffusers_helper.utils import zero_module
|
19 |
+
|
20 |
+
|
21 |
+
enabled_backends = []
|
22 |
+
|
23 |
+
if torch.backends.cuda.flash_sdp_enabled():
|
24 |
+
enabled_backends.append("flash")
|
25 |
+
if torch.backends.cuda.math_sdp_enabled():
|
26 |
+
enabled_backends.append("math")
|
27 |
+
if torch.backends.cuda.mem_efficient_sdp_enabled():
|
28 |
+
enabled_backends.append("mem_efficient")
|
29 |
+
if torch.backends.cuda.cudnn_sdp_enabled():
|
30 |
+
enabled_backends.append("cudnn")
|
31 |
+
|
32 |
+
print("Currently enabled native sdp backends:", enabled_backends)
|
33 |
+
|
34 |
+
try:
|
35 |
+
# raise NotImplementedError
|
36 |
+
from xformers.ops import memory_efficient_attention as xformers_attn_func
|
37 |
+
print('Xformers is installed!')
|
38 |
+
except:
|
39 |
+
print('Xformers is not installed!')
|
40 |
+
xformers_attn_func = None
|
41 |
+
|
42 |
+
try:
|
43 |
+
# raise NotImplementedError
|
44 |
+
from flash_attn import flash_attn_varlen_func, flash_attn_func
|
45 |
+
print('Flash Attn is installed!')
|
46 |
+
except:
|
47 |
+
print('Flash Attn is not installed!')
|
48 |
+
flash_attn_varlen_func = None
|
49 |
+
flash_attn_func = None
|
50 |
+
|
51 |
+
try:
|
52 |
+
# raise NotImplementedError
|
53 |
+
from sageattention import sageattn_varlen, sageattn
|
54 |
+
print('Sage Attn is installed!')
|
55 |
+
except:
|
56 |
+
print('Sage Attn is not installed!')
|
57 |
+
sageattn_varlen = None
|
58 |
+
sageattn = None
|
59 |
+
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
62 |
+
|
63 |
+
|
64 |
+
def pad_for_3d_conv(x, kernel_size):
|
65 |
+
b, c, t, h, w = x.shape
|
66 |
+
pt, ph, pw = kernel_size
|
67 |
+
pad_t = (pt - (t % pt)) % pt
|
68 |
+
pad_h = (ph - (h % ph)) % ph
|
69 |
+
pad_w = (pw - (w % pw)) % pw
|
70 |
+
return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
|
71 |
+
|
72 |
+
|
73 |
+
def center_down_sample_3d(x, kernel_size):
|
74 |
+
# pt, ph, pw = kernel_size
|
75 |
+
# cp = (pt * ph * pw) // 2
|
76 |
+
# xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
|
77 |
+
# xc = xp[cp]
|
78 |
+
# return xc
|
79 |
+
return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
|
80 |
+
|
81 |
+
|
82 |
+
def get_cu_seqlens(text_mask, img_len):
|
83 |
+
batch_size = text_mask.shape[0]
|
84 |
+
text_len = text_mask.sum(dim=1)
|
85 |
+
max_len = text_mask.shape[1] + img_len
|
86 |
+
|
87 |
+
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
88 |
+
|
89 |
+
for i in range(batch_size):
|
90 |
+
s = text_len[i] + img_len
|
91 |
+
s1 = i * max_len + s
|
92 |
+
s2 = (i + 1) * max_len
|
93 |
+
cu_seqlens[2 * i + 1] = s1
|
94 |
+
cu_seqlens[2 * i + 2] = s2
|
95 |
+
|
96 |
+
return cu_seqlens
|
97 |
+
|
98 |
+
|
99 |
+
def apply_rotary_emb_transposed(x, freqs_cis):
|
100 |
+
cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
|
101 |
+
x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
|
102 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
103 |
+
out = x.float() * cos + x_rotated.float() * sin
|
104 |
+
out = out.to(x)
|
105 |
+
return out
|
106 |
+
|
107 |
+
|
108 |
+
def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
|
109 |
+
if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
|
110 |
+
if sageattn is not None:
|
111 |
+
x = sageattn(q, k, v, tensor_layout='NHD')
|
112 |
+
return x
|
113 |
+
|
114 |
+
if flash_attn_func is not None:
|
115 |
+
x = flash_attn_func(q, k, v)
|
116 |
+
return x
|
117 |
+
|
118 |
+
if xformers_attn_func is not None:
|
119 |
+
x = xformers_attn_func(q, k, v)
|
120 |
+
return x
|
121 |
+
|
122 |
+
x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
|
123 |
+
return x
|
124 |
+
|
125 |
+
batch_size = q.shape[0]
|
126 |
+
q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
|
127 |
+
k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
|
128 |
+
v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
|
129 |
+
if sageattn_varlen is not None:
|
130 |
+
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
131 |
+
elif flash_attn_varlen_func is not None:
|
132 |
+
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
133 |
+
else:
|
134 |
+
raise NotImplementedError('No Attn Installed!')
|
135 |
+
x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
|
136 |
+
return x
|
137 |
+
|
138 |
+
|
139 |
+
class HunyuanAttnProcessorFlashAttnDouble:
|
140 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
141 |
+
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
142 |
+
|
143 |
+
query = attn.to_q(hidden_states)
|
144 |
+
key = attn.to_k(hidden_states)
|
145 |
+
value = attn.to_v(hidden_states)
|
146 |
+
|
147 |
+
query = query.unflatten(2, (attn.heads, -1))
|
148 |
+
key = key.unflatten(2, (attn.heads, -1))
|
149 |
+
value = value.unflatten(2, (attn.heads, -1))
|
150 |
+
|
151 |
+
query = attn.norm_q(query)
|
152 |
+
key = attn.norm_k(key)
|
153 |
+
|
154 |
+
query = apply_rotary_emb_transposed(query, image_rotary_emb)
|
155 |
+
key = apply_rotary_emb_transposed(key, image_rotary_emb)
|
156 |
+
|
157 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
158 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
159 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
160 |
+
|
161 |
+
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
162 |
+
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
163 |
+
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
164 |
+
|
165 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
166 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
167 |
+
|
168 |
+
query = torch.cat([query, encoder_query], dim=1)
|
169 |
+
key = torch.cat([key, encoder_key], dim=1)
|
170 |
+
value = torch.cat([value, encoder_value], dim=1)
|
171 |
+
|
172 |
+
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
173 |
+
hidden_states = hidden_states.flatten(-2)
|
174 |
+
|
175 |
+
txt_length = encoder_hidden_states.shape[1]
|
176 |
+
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
177 |
+
|
178 |
+
hidden_states = attn.to_out[0](hidden_states)
|
179 |
+
hidden_states = attn.to_out[1](hidden_states)
|
180 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
181 |
+
|
182 |
+
return hidden_states, encoder_hidden_states
|
183 |
+
|
184 |
+
|
185 |
+
class HunyuanAttnProcessorFlashAttnSingle:
|
186 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
187 |
+
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
188 |
+
|
189 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
190 |
+
|
191 |
+
query = attn.to_q(hidden_states)
|
192 |
+
key = attn.to_k(hidden_states)
|
193 |
+
value = attn.to_v(hidden_states)
|
194 |
+
|
195 |
+
query = query.unflatten(2, (attn.heads, -1))
|
196 |
+
key = key.unflatten(2, (attn.heads, -1))
|
197 |
+
value = value.unflatten(2, (attn.heads, -1))
|
198 |
+
|
199 |
+
query = attn.norm_q(query)
|
200 |
+
key = attn.norm_k(key)
|
201 |
+
|
202 |
+
txt_length = encoder_hidden_states.shape[1]
|
203 |
+
|
204 |
+
query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
|
205 |
+
key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
|
206 |
+
|
207 |
+
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
208 |
+
hidden_states = hidden_states.flatten(-2)
|
209 |
+
|
210 |
+
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
211 |
+
|
212 |
+
return hidden_states, encoder_hidden_states
|
213 |
+
|
214 |
+
|
215 |
+
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
|
216 |
+
def __init__(self, embedding_dim, pooled_projection_dim):
|
217 |
+
super().__init__()
|
218 |
+
|
219 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
220 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
221 |
+
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
222 |
+
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
223 |
+
|
224 |
+
def forward(self, timestep, guidance, pooled_projection):
|
225 |
+
timesteps_proj = self.time_proj(timestep)
|
226 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
227 |
+
|
228 |
+
guidance_proj = self.time_proj(guidance)
|
229 |
+
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
|
230 |
+
|
231 |
+
time_guidance_emb = timesteps_emb + guidance_emb
|
232 |
+
|
233 |
+
pooled_projections = self.text_embedder(pooled_projection)
|
234 |
+
conditioning = time_guidance_emb + pooled_projections
|
235 |
+
|
236 |
+
return conditioning
|
237 |
+
|
238 |
+
|
239 |
+
class CombinedTimestepTextProjEmbeddings(nn.Module):
|
240 |
+
def __init__(self, embedding_dim, pooled_projection_dim):
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
244 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
245 |
+
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
246 |
+
|
247 |
+
def forward(self, timestep, pooled_projection):
|
248 |
+
timesteps_proj = self.time_proj(timestep)
|
249 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
250 |
+
|
251 |
+
pooled_projections = self.text_embedder(pooled_projection)
|
252 |
+
|
253 |
+
conditioning = timesteps_emb + pooled_projections
|
254 |
+
|
255 |
+
return conditioning
|
256 |
+
|
257 |
+
|
258 |
+
class HunyuanVideoAdaNorm(nn.Module):
|
259 |
+
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
|
260 |
+
super().__init__()
|
261 |
+
|
262 |
+
out_features = out_features or 2 * in_features
|
263 |
+
self.linear = nn.Linear(in_features, out_features)
|
264 |
+
self.nonlinearity = nn.SiLU()
|
265 |
+
|
266 |
+
def forward(
|
267 |
+
self, temb: torch.Tensor
|
268 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
269 |
+
temb = self.linear(self.nonlinearity(temb))
|
270 |
+
gate_msa, gate_mlp = temb.chunk(2, dim=-1)
|
271 |
+
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
|
272 |
+
return gate_msa, gate_mlp
|
273 |
+
|
274 |
+
|
275 |
+
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
num_attention_heads: int,
|
279 |
+
attention_head_dim: int,
|
280 |
+
mlp_width_ratio: str = 4.0,
|
281 |
+
mlp_drop_rate: float = 0.0,
|
282 |
+
attention_bias: bool = True,
|
283 |
+
) -> None:
|
284 |
+
super().__init__()
|
285 |
+
|
286 |
+
hidden_size = num_attention_heads * attention_head_dim
|
287 |
+
|
288 |
+
self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
289 |
+
self.attn = Attention(
|
290 |
+
query_dim=hidden_size,
|
291 |
+
cross_attention_dim=None,
|
292 |
+
heads=num_attention_heads,
|
293 |
+
dim_head=attention_head_dim,
|
294 |
+
bias=attention_bias,
|
295 |
+
)
|
296 |
+
|
297 |
+
self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
298 |
+
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
|
299 |
+
|
300 |
+
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
|
301 |
+
|
302 |
+
def forward(
|
303 |
+
self,
|
304 |
+
hidden_states: torch.Tensor,
|
305 |
+
temb: torch.Tensor,
|
306 |
+
attention_mask: Optional[torch.Tensor] = None,
|
307 |
+
) -> torch.Tensor:
|
308 |
+
norm_hidden_states = self.norm1(hidden_states)
|
309 |
+
|
310 |
+
attn_output = self.attn(
|
311 |
+
hidden_states=norm_hidden_states,
|
312 |
+
encoder_hidden_states=None,
|
313 |
+
attention_mask=attention_mask,
|
314 |
+
)
|
315 |
+
|
316 |
+
gate_msa, gate_mlp = self.norm_out(temb)
|
317 |
+
hidden_states = hidden_states + attn_output * gate_msa
|
318 |
+
|
319 |
+
ff_output = self.ff(self.norm2(hidden_states))
|
320 |
+
hidden_states = hidden_states + ff_output * gate_mlp
|
321 |
+
|
322 |
+
return hidden_states
|
323 |
+
|
324 |
+
|
325 |
+
class HunyuanVideoIndividualTokenRefiner(nn.Module):
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
num_attention_heads: int,
|
329 |
+
attention_head_dim: int,
|
330 |
+
num_layers: int,
|
331 |
+
mlp_width_ratio: float = 4.0,
|
332 |
+
mlp_drop_rate: float = 0.0,
|
333 |
+
attention_bias: bool = True,
|
334 |
+
) -> None:
|
335 |
+
super().__init__()
|
336 |
+
|
337 |
+
self.refiner_blocks = nn.ModuleList(
|
338 |
+
[
|
339 |
+
HunyuanVideoIndividualTokenRefinerBlock(
|
340 |
+
num_attention_heads=num_attention_heads,
|
341 |
+
attention_head_dim=attention_head_dim,
|
342 |
+
mlp_width_ratio=mlp_width_ratio,
|
343 |
+
mlp_drop_rate=mlp_drop_rate,
|
344 |
+
attention_bias=attention_bias,
|
345 |
+
)
|
346 |
+
for _ in range(num_layers)
|
347 |
+
]
|
348 |
+
)
|
349 |
+
|
350 |
+
def forward(
|
351 |
+
self,
|
352 |
+
hidden_states: torch.Tensor,
|
353 |
+
temb: torch.Tensor,
|
354 |
+
attention_mask: Optional[torch.Tensor] = None,
|
355 |
+
) -> None:
|
356 |
+
self_attn_mask = None
|
357 |
+
if attention_mask is not None:
|
358 |
+
batch_size = attention_mask.shape[0]
|
359 |
+
seq_len = attention_mask.shape[1]
|
360 |
+
attention_mask = attention_mask.to(hidden_states.device).bool()
|
361 |
+
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
|
362 |
+
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
|
363 |
+
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
|
364 |
+
self_attn_mask[:, :, :, 0] = True
|
365 |
+
|
366 |
+
for block in self.refiner_blocks:
|
367 |
+
hidden_states = block(hidden_states, temb, self_attn_mask)
|
368 |
+
|
369 |
+
return hidden_states
|
370 |
+
|
371 |
+
|
372 |
+
class HunyuanVideoTokenRefiner(nn.Module):
|
373 |
+
def __init__(
|
374 |
+
self,
|
375 |
+
in_channels: int,
|
376 |
+
num_attention_heads: int,
|
377 |
+
attention_head_dim: int,
|
378 |
+
num_layers: int,
|
379 |
+
mlp_ratio: float = 4.0,
|
380 |
+
mlp_drop_rate: float = 0.0,
|
381 |
+
attention_bias: bool = True,
|
382 |
+
) -> None:
|
383 |
+
super().__init__()
|
384 |
+
|
385 |
+
hidden_size = num_attention_heads * attention_head_dim
|
386 |
+
|
387 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
388 |
+
embedding_dim=hidden_size, pooled_projection_dim=in_channels
|
389 |
+
)
|
390 |
+
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
|
391 |
+
self.token_refiner = HunyuanVideoIndividualTokenRefiner(
|
392 |
+
num_attention_heads=num_attention_heads,
|
393 |
+
attention_head_dim=attention_head_dim,
|
394 |
+
num_layers=num_layers,
|
395 |
+
mlp_width_ratio=mlp_ratio,
|
396 |
+
mlp_drop_rate=mlp_drop_rate,
|
397 |
+
attention_bias=attention_bias,
|
398 |
+
)
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
hidden_states: torch.Tensor,
|
403 |
+
timestep: torch.LongTensor,
|
404 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
405 |
+
) -> torch.Tensor:
|
406 |
+
if attention_mask is None:
|
407 |
+
pooled_projections = hidden_states.mean(dim=1)
|
408 |
+
else:
|
409 |
+
original_dtype = hidden_states.dtype
|
410 |
+
mask_float = attention_mask.float().unsqueeze(-1)
|
411 |
+
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
|
412 |
+
pooled_projections = pooled_projections.to(original_dtype)
|
413 |
+
|
414 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
415 |
+
hidden_states = self.proj_in(hidden_states)
|
416 |
+
hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
|
417 |
+
|
418 |
+
return hidden_states
|
419 |
+
|
420 |
+
|
421 |
+
class HunyuanVideoRotaryPosEmbed(nn.Module):
|
422 |
+
def __init__(self, rope_dim, theta):
|
423 |
+
super().__init__()
|
424 |
+
self.DT, self.DY, self.DX = rope_dim
|
425 |
+
self.theta = theta
|
426 |
+
|
427 |
+
@torch.no_grad()
|
428 |
+
def get_frequency(self, dim, pos):
|
429 |
+
T, H, W = pos.shape
|
430 |
+
freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
|
431 |
+
freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
|
432 |
+
return freqs.cos(), freqs.sin()
|
433 |
+
|
434 |
+
@torch.no_grad()
|
435 |
+
def forward_inner(self, frame_indices, height, width, device):
|
436 |
+
GT, GY, GX = torch.meshgrid(
|
437 |
+
frame_indices.to(device=device, dtype=torch.float32),
|
438 |
+
torch.arange(0, height, device=device, dtype=torch.float32),
|
439 |
+
torch.arange(0, width, device=device, dtype=torch.float32),
|
440 |
+
indexing="ij"
|
441 |
+
)
|
442 |
+
|
443 |
+
FCT, FST = self.get_frequency(self.DT, GT)
|
444 |
+
FCY, FSY = self.get_frequency(self.DY, GY)
|
445 |
+
FCX, FSX = self.get_frequency(self.DX, GX)
|
446 |
+
|
447 |
+
result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
|
448 |
+
|
449 |
+
return result.to(device)
|
450 |
+
|
451 |
+
@torch.no_grad()
|
452 |
+
def forward(self, frame_indices, height, width, device):
|
453 |
+
frame_indices = frame_indices.unbind(0)
|
454 |
+
results = [self.forward_inner(f, height, width, device) for f in frame_indices]
|
455 |
+
results = torch.stack(results, dim=0)
|
456 |
+
return results
|
457 |
+
|
458 |
+
|
459 |
+
class AdaLayerNormZero(nn.Module):
|
460 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
461 |
+
super().__init__()
|
462 |
+
self.silu = nn.SiLU()
|
463 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
|
464 |
+
if norm_type == "layer_norm":
|
465 |
+
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
466 |
+
else:
|
467 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
468 |
+
|
469 |
+
def forward(
|
470 |
+
self,
|
471 |
+
x: torch.Tensor,
|
472 |
+
emb: Optional[torch.Tensor] = None,
|
473 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
474 |
+
emb = emb.unsqueeze(-2)
|
475 |
+
emb = self.linear(self.silu(emb))
|
476 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
|
477 |
+
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
478 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
479 |
+
|
480 |
+
|
481 |
+
class AdaLayerNormZeroSingle(nn.Module):
|
482 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
483 |
+
super().__init__()
|
484 |
+
|
485 |
+
self.silu = nn.SiLU()
|
486 |
+
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
|
487 |
+
if norm_type == "layer_norm":
|
488 |
+
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
489 |
+
else:
|
490 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
491 |
+
|
492 |
+
def forward(
|
493 |
+
self,
|
494 |
+
x: torch.Tensor,
|
495 |
+
emb: Optional[torch.Tensor] = None,
|
496 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
497 |
+
emb = emb.unsqueeze(-2)
|
498 |
+
emb = self.linear(self.silu(emb))
|
499 |
+
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
|
500 |
+
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
501 |
+
return x, gate_msa
|
502 |
+
|
503 |
+
|
504 |
+
class AdaLayerNormContinuous(nn.Module):
|
505 |
+
def __init__(
|
506 |
+
self,
|
507 |
+
embedding_dim: int,
|
508 |
+
conditioning_embedding_dim: int,
|
509 |
+
elementwise_affine=True,
|
510 |
+
eps=1e-5,
|
511 |
+
bias=True,
|
512 |
+
norm_type="layer_norm",
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
self.silu = nn.SiLU()
|
516 |
+
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
|
517 |
+
if norm_type == "layer_norm":
|
518 |
+
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
519 |
+
else:
|
520 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
521 |
+
|
522 |
+
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
523 |
+
emb = emb.unsqueeze(-2)
|
524 |
+
emb = self.linear(self.silu(emb))
|
525 |
+
scale, shift = emb.chunk(2, dim=-1)
|
526 |
+
x = self.norm(x) * (1 + scale) + shift
|
527 |
+
return x
|
528 |
+
|
529 |
+
|
530 |
+
class HunyuanVideoSingleTransformerBlock(nn.Module):
|
531 |
+
def __init__(
|
532 |
+
self,
|
533 |
+
num_attention_heads: int,
|
534 |
+
attention_head_dim: int,
|
535 |
+
mlp_ratio: float = 4.0,
|
536 |
+
qk_norm: str = "rms_norm",
|
537 |
+
) -> None:
|
538 |
+
super().__init__()
|
539 |
+
|
540 |
+
hidden_size = num_attention_heads * attention_head_dim
|
541 |
+
mlp_dim = int(hidden_size * mlp_ratio)
|
542 |
+
|
543 |
+
self.attn = Attention(
|
544 |
+
query_dim=hidden_size,
|
545 |
+
cross_attention_dim=None,
|
546 |
+
dim_head=attention_head_dim,
|
547 |
+
heads=num_attention_heads,
|
548 |
+
out_dim=hidden_size,
|
549 |
+
bias=True,
|
550 |
+
processor=HunyuanAttnProcessorFlashAttnSingle(),
|
551 |
+
qk_norm=qk_norm,
|
552 |
+
eps=1e-6,
|
553 |
+
pre_only=True,
|
554 |
+
)
|
555 |
+
|
556 |
+
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
|
557 |
+
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
|
558 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
559 |
+
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
|
560 |
+
|
561 |
+
def forward(
|
562 |
+
self,
|
563 |
+
hidden_states: torch.Tensor,
|
564 |
+
encoder_hidden_states: torch.Tensor,
|
565 |
+
temb: torch.Tensor,
|
566 |
+
attention_mask: Optional[torch.Tensor] = None,
|
567 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
568 |
+
) -> torch.Tensor:
|
569 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
570 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
571 |
+
|
572 |
+
residual = hidden_states
|
573 |
+
|
574 |
+
# 1. Input normalization
|
575 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
576 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
577 |
+
|
578 |
+
norm_hidden_states, norm_encoder_hidden_states = (
|
579 |
+
norm_hidden_states[:, :-text_seq_length, :],
|
580 |
+
norm_hidden_states[:, -text_seq_length:, :],
|
581 |
+
)
|
582 |
+
|
583 |
+
# 2. Attention
|
584 |
+
attn_output, context_attn_output = self.attn(
|
585 |
+
hidden_states=norm_hidden_states,
|
586 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
587 |
+
attention_mask=attention_mask,
|
588 |
+
image_rotary_emb=image_rotary_emb,
|
589 |
+
)
|
590 |
+
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
|
591 |
+
|
592 |
+
# 3. Modulation and residual connection
|
593 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
594 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
595 |
+
hidden_states = hidden_states + residual
|
596 |
+
|
597 |
+
hidden_states, encoder_hidden_states = (
|
598 |
+
hidden_states[:, :-text_seq_length, :],
|
599 |
+
hidden_states[:, -text_seq_length:, :],
|
600 |
+
)
|
601 |
+
return hidden_states, encoder_hidden_states
|
602 |
+
|
603 |
+
|
604 |
+
class HunyuanVideoTransformerBlock(nn.Module):
|
605 |
+
def __init__(
|
606 |
+
self,
|
607 |
+
num_attention_heads: int,
|
608 |
+
attention_head_dim: int,
|
609 |
+
mlp_ratio: float,
|
610 |
+
qk_norm: str = "rms_norm",
|
611 |
+
) -> None:
|
612 |
+
super().__init__()
|
613 |
+
|
614 |
+
hidden_size = num_attention_heads * attention_head_dim
|
615 |
+
|
616 |
+
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
617 |
+
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
618 |
+
|
619 |
+
self.attn = Attention(
|
620 |
+
query_dim=hidden_size,
|
621 |
+
cross_attention_dim=None,
|
622 |
+
added_kv_proj_dim=hidden_size,
|
623 |
+
dim_head=attention_head_dim,
|
624 |
+
heads=num_attention_heads,
|
625 |
+
out_dim=hidden_size,
|
626 |
+
context_pre_only=False,
|
627 |
+
bias=True,
|
628 |
+
processor=HunyuanAttnProcessorFlashAttnDouble(),
|
629 |
+
qk_norm=qk_norm,
|
630 |
+
eps=1e-6,
|
631 |
+
)
|
632 |
+
|
633 |
+
self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
634 |
+
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
635 |
+
|
636 |
+
self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
637 |
+
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
638 |
+
|
639 |
+
def forward(
|
640 |
+
self,
|
641 |
+
hidden_states: torch.Tensor,
|
642 |
+
encoder_hidden_states: torch.Tensor,
|
643 |
+
temb: torch.Tensor,
|
644 |
+
attention_mask: Optional[torch.Tensor] = None,
|
645 |
+
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
646 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
647 |
+
# 1. Input normalization
|
648 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
649 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
|
650 |
+
|
651 |
+
# 2. Joint attention
|
652 |
+
attn_output, context_attn_output = self.attn(
|
653 |
+
hidden_states=norm_hidden_states,
|
654 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
655 |
+
attention_mask=attention_mask,
|
656 |
+
image_rotary_emb=freqs_cis,
|
657 |
+
)
|
658 |
+
|
659 |
+
# 3. Modulation and residual connection
|
660 |
+
hidden_states = hidden_states + attn_output * gate_msa
|
661 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
|
662 |
+
|
663 |
+
norm_hidden_states = self.norm2(hidden_states)
|
664 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
665 |
+
|
666 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
667 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
|
668 |
+
|
669 |
+
# 4. Feed-forward
|
670 |
+
ff_output = self.ff(norm_hidden_states)
|
671 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
672 |
+
|
673 |
+
hidden_states = hidden_states + gate_mlp * ff_output
|
674 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
|
675 |
+
|
676 |
+
return hidden_states, encoder_hidden_states
|
677 |
+
|
678 |
+
|
679 |
+
class ClipVisionProjection(nn.Module):
|
680 |
+
def __init__(self, in_channels, out_channels):
|
681 |
+
super().__init__()
|
682 |
+
self.up = nn.Linear(in_channels, out_channels * 3)
|
683 |
+
self.down = nn.Linear(out_channels * 3, out_channels)
|
684 |
+
|
685 |
+
def forward(self, x):
|
686 |
+
projected_x = self.down(nn.functional.silu(self.up(x)))
|
687 |
+
return projected_x
|
688 |
+
|
689 |
+
|
690 |
+
class HunyuanVideoPatchEmbed(nn.Module):
|
691 |
+
def __init__(self, patch_size, in_chans, embed_dim):
|
692 |
+
super().__init__()
|
693 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
694 |
+
|
695 |
+
|
696 |
+
class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
|
697 |
+
def __init__(self, inner_dim):
|
698 |
+
super().__init__()
|
699 |
+
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
700 |
+
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
|
701 |
+
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
|
702 |
+
|
703 |
+
@torch.no_grad()
|
704 |
+
def initialize_weight_from_another_conv3d(self, another_layer):
|
705 |
+
weight = another_layer.weight.detach().clone()
|
706 |
+
bias = another_layer.bias.detach().clone()
|
707 |
+
|
708 |
+
sd = {
|
709 |
+
'proj.weight': weight.clone(),
|
710 |
+
'proj.bias': bias.clone(),
|
711 |
+
'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
|
712 |
+
'proj_2x.bias': bias.clone(),
|
713 |
+
'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
|
714 |
+
'proj_4x.bias': bias.clone(),
|
715 |
+
}
|
716 |
+
|
717 |
+
sd = {k: v.clone() for k, v in sd.items()}
|
718 |
+
|
719 |
+
self.load_state_dict(sd)
|
720 |
+
return
|
721 |
+
|
722 |
+
|
723 |
+
class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
724 |
+
@register_to_config
|
725 |
+
def __init__(
|
726 |
+
self,
|
727 |
+
in_channels: int = 16,
|
728 |
+
out_channels: int = 16,
|
729 |
+
num_attention_heads: int = 24,
|
730 |
+
attention_head_dim: int = 128,
|
731 |
+
num_layers: int = 20,
|
732 |
+
num_single_layers: int = 40,
|
733 |
+
num_refiner_layers: int = 2,
|
734 |
+
mlp_ratio: float = 4.0,
|
735 |
+
patch_size: int = 2,
|
736 |
+
patch_size_t: int = 1,
|
737 |
+
qk_norm: str = "rms_norm",
|
738 |
+
guidance_embeds: bool = True,
|
739 |
+
text_embed_dim: int = 4096,
|
740 |
+
pooled_projection_dim: int = 768,
|
741 |
+
rope_theta: float = 256.0,
|
742 |
+
rope_axes_dim: Tuple[int] = (16, 56, 56),
|
743 |
+
has_image_proj=False,
|
744 |
+
image_proj_dim=1152,
|
745 |
+
has_clean_x_embedder=False,
|
746 |
+
) -> None:
|
747 |
+
super().__init__()
|
748 |
+
|
749 |
+
inner_dim = num_attention_heads * attention_head_dim
|
750 |
+
out_channels = out_channels or in_channels
|
751 |
+
|
752 |
+
# 1. Latent and condition embedders
|
753 |
+
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
|
754 |
+
self.context_embedder = HunyuanVideoTokenRefiner(
|
755 |
+
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
|
756 |
+
)
|
757 |
+
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
|
758 |
+
|
759 |
+
self.clean_x_embedder = None
|
760 |
+
self.image_projection = None
|
761 |
+
|
762 |
+
# 2. RoPE
|
763 |
+
self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
|
764 |
+
|
765 |
+
# 3. Dual stream transformer blocks
|
766 |
+
self.transformer_blocks = nn.ModuleList(
|
767 |
+
[
|
768 |
+
HunyuanVideoTransformerBlock(
|
769 |
+
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
770 |
+
)
|
771 |
+
for _ in range(num_layers)
|
772 |
+
]
|
773 |
+
)
|
774 |
+
|
775 |
+
# 4. Single stream transformer blocks
|
776 |
+
self.single_transformer_blocks = nn.ModuleList(
|
777 |
+
[
|
778 |
+
HunyuanVideoSingleTransformerBlock(
|
779 |
+
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
780 |
+
)
|
781 |
+
for _ in range(num_single_layers)
|
782 |
+
]
|
783 |
+
)
|
784 |
+
|
785 |
+
# 5. Output projection
|
786 |
+
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
|
787 |
+
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
|
788 |
+
|
789 |
+
self.inner_dim = inner_dim
|
790 |
+
self.use_gradient_checkpointing = False
|
791 |
+
self.enable_teacache = False
|
792 |
+
|
793 |
+
if has_image_proj:
|
794 |
+
self.install_image_projection(image_proj_dim)
|
795 |
+
|
796 |
+
if has_clean_x_embedder:
|
797 |
+
self.install_clean_x_embedder()
|
798 |
+
|
799 |
+
self.high_quality_fp32_output_for_inference = False
|
800 |
+
|
801 |
+
def install_image_projection(self, in_channels):
|
802 |
+
self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
|
803 |
+
self.config['has_image_proj'] = True
|
804 |
+
self.config['image_proj_dim'] = in_channels
|
805 |
+
|
806 |
+
def install_clean_x_embedder(self):
|
807 |
+
self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
|
808 |
+
self.config['has_clean_x_embedder'] = True
|
809 |
+
|
810 |
+
def enable_gradient_checkpointing(self):
|
811 |
+
self.use_gradient_checkpointing = True
|
812 |
+
print('self.use_gradient_checkpointing = True')
|
813 |
+
|
814 |
+
def disable_gradient_checkpointing(self):
|
815 |
+
self.use_gradient_checkpointing = False
|
816 |
+
print('self.use_gradient_checkpointing = False')
|
817 |
+
|
818 |
+
def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
|
819 |
+
self.enable_teacache = enable_teacache
|
820 |
+
self.cnt = 0
|
821 |
+
self.num_steps = num_steps
|
822 |
+
self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
|
823 |
+
self.accumulated_rel_l1_distance = 0
|
824 |
+
self.previous_modulated_input = None
|
825 |
+
self.previous_residual = None
|
826 |
+
self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
|
827 |
+
|
828 |
+
def gradient_checkpointing_method(self, block, *args):
|
829 |
+
if self.use_gradient_checkpointing:
|
830 |
+
result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
|
831 |
+
else:
|
832 |
+
result = block(*args)
|
833 |
+
return result
|
834 |
+
|
835 |
+
def process_input_hidden_states(
|
836 |
+
self,
|
837 |
+
latents, latent_indices=None,
|
838 |
+
clean_latents=None, clean_latent_indices=None,
|
839 |
+
clean_latents_2x=None, clean_latent_2x_indices=None,
|
840 |
+
clean_latents_4x=None, clean_latent_4x_indices=None
|
841 |
+
):
|
842 |
+
hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
|
843 |
+
B, C, T, H, W = hidden_states.shape
|
844 |
+
|
845 |
+
if latent_indices is None:
|
846 |
+
latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
|
847 |
+
|
848 |
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
849 |
+
|
850 |
+
rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
|
851 |
+
rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
|
852 |
+
|
853 |
+
if clean_latents is not None and clean_latent_indices is not None:
|
854 |
+
clean_latents = clean_latents.to(hidden_states)
|
855 |
+
clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
|
856 |
+
clean_latents = clean_latents.flatten(2).transpose(1, 2)
|
857 |
+
|
858 |
+
clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
|
859 |
+
clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
|
860 |
+
|
861 |
+
hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
|
862 |
+
rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
|
863 |
+
|
864 |
+
if clean_latents_2x is not None and clean_latent_2x_indices is not None:
|
865 |
+
clean_latents_2x = clean_latents_2x.to(hidden_states)
|
866 |
+
clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
|
867 |
+
clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
|
868 |
+
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
869 |
+
|
870 |
+
clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
|
871 |
+
clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
|
872 |
+
clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
|
873 |
+
clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
|
874 |
+
|
875 |
+
hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
|
876 |
+
rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
|
877 |
+
|
878 |
+
if clean_latents_4x is not None and clean_latent_4x_indices is not None:
|
879 |
+
clean_latents_4x = clean_latents_4x.to(hidden_states)
|
880 |
+
clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
|
881 |
+
clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
|
882 |
+
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
883 |
+
|
884 |
+
clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
|
885 |
+
clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
|
886 |
+
clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
|
887 |
+
clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
|
888 |
+
|
889 |
+
hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
|
890 |
+
rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
|
891 |
+
|
892 |
+
return hidden_states, rope_freqs
|
893 |
+
|
894 |
+
def forward(
|
895 |
+
self,
|
896 |
+
hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
|
897 |
+
latent_indices=None,
|
898 |
+
clean_latents=None, clean_latent_indices=None,
|
899 |
+
clean_latents_2x=None, clean_latent_2x_indices=None,
|
900 |
+
clean_latents_4x=None, clean_latent_4x_indices=None,
|
901 |
+
image_embeddings=None,
|
902 |
+
attention_kwargs=None, return_dict=True
|
903 |
+
):
|
904 |
+
|
905 |
+
if attention_kwargs is None:
|
906 |
+
attention_kwargs = {}
|
907 |
+
|
908 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
909 |
+
p, p_t = self.config['patch_size'], self.config['patch_size_t']
|
910 |
+
post_patch_num_frames = num_frames // p_t
|
911 |
+
post_patch_height = height // p
|
912 |
+
post_patch_width = width // p
|
913 |
+
original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
|
914 |
+
|
915 |
+
hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
|
916 |
+
|
917 |
+
temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
|
918 |
+
encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
|
919 |
+
|
920 |
+
if self.image_projection is not None:
|
921 |
+
assert image_embeddings is not None, 'You must use image embeddings!'
|
922 |
+
extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
|
923 |
+
extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
|
924 |
+
|
925 |
+
# must cat before (not after) encoder_hidden_states, due to attn masking
|
926 |
+
encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
|
927 |
+
encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
|
928 |
+
|
929 |
+
with torch.no_grad():
|
930 |
+
if batch_size == 1:
|
931 |
+
# When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
|
932 |
+
# If they are not same, then their impls are wrong. Ours are always the correct one.
|
933 |
+
text_len = encoder_attention_mask.sum().item()
|
934 |
+
encoder_hidden_states = encoder_hidden_states[:, :text_len]
|
935 |
+
attention_mask = None, None, None, None
|
936 |
+
else:
|
937 |
+
img_seq_len = hidden_states.shape[1]
|
938 |
+
txt_seq_len = encoder_hidden_states.shape[1]
|
939 |
+
|
940 |
+
cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
|
941 |
+
cu_seqlens_kv = cu_seqlens_q
|
942 |
+
max_seqlen_q = img_seq_len + txt_seq_len
|
943 |
+
max_seqlen_kv = max_seqlen_q
|
944 |
+
|
945 |
+
attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
|
946 |
+
|
947 |
+
if self.enable_teacache:
|
948 |
+
modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
|
949 |
+
|
950 |
+
if self.cnt == 0 or self.cnt == self.num_steps-1:
|
951 |
+
should_calc = True
|
952 |
+
self.accumulated_rel_l1_distance = 0
|
953 |
+
else:
|
954 |
+
curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
|
955 |
+
self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
|
956 |
+
should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
|
957 |
+
|
958 |
+
if should_calc:
|
959 |
+
self.accumulated_rel_l1_distance = 0
|
960 |
+
|
961 |
+
self.previous_modulated_input = modulated_inp
|
962 |
+
self.cnt += 1
|
963 |
+
|
964 |
+
if self.cnt == self.num_steps:
|
965 |
+
self.cnt = 0
|
966 |
+
|
967 |
+
if not should_calc:
|
968 |
+
hidden_states = hidden_states + self.previous_residual
|
969 |
+
else:
|
970 |
+
ori_hidden_states = hidden_states.clone()
|
971 |
+
|
972 |
+
for block_id, block in enumerate(self.transformer_blocks):
|
973 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
974 |
+
block,
|
975 |
+
hidden_states,
|
976 |
+
encoder_hidden_states,
|
977 |
+
temb,
|
978 |
+
attention_mask,
|
979 |
+
rope_freqs
|
980 |
+
)
|
981 |
+
|
982 |
+
for block_id, block in enumerate(self.single_transformer_blocks):
|
983 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
984 |
+
block,
|
985 |
+
hidden_states,
|
986 |
+
encoder_hidden_states,
|
987 |
+
temb,
|
988 |
+
attention_mask,
|
989 |
+
rope_freqs
|
990 |
+
)
|
991 |
+
|
992 |
+
self.previous_residual = hidden_states - ori_hidden_states
|
993 |
+
else:
|
994 |
+
for block_id, block in enumerate(self.transformer_blocks):
|
995 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
996 |
+
block,
|
997 |
+
hidden_states,
|
998 |
+
encoder_hidden_states,
|
999 |
+
temb,
|
1000 |
+
attention_mask,
|
1001 |
+
rope_freqs
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
for block_id, block in enumerate(self.single_transformer_blocks):
|
1005 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
1006 |
+
block,
|
1007 |
+
hidden_states,
|
1008 |
+
encoder_hidden_states,
|
1009 |
+
temb,
|
1010 |
+
attention_mask,
|
1011 |
+
rope_freqs
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
|
1015 |
+
|
1016 |
+
hidden_states = hidden_states[:, -original_context_length:, :]
|
1017 |
+
|
1018 |
+
if self.high_quality_fp32_output_for_inference:
|
1019 |
+
hidden_states = hidden_states.to(dtype=torch.float32)
|
1020 |
+
if self.proj_out.weight.dtype != torch.float32:
|
1021 |
+
self.proj_out.to(dtype=torch.float32)
|
1022 |
+
|
1023 |
+
hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
|
1024 |
+
|
1025 |
+
hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
|
1026 |
+
t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
|
1027 |
+
pt=p_t, ph=p, pw=p)
|
1028 |
+
|
1029 |
+
if return_dict:
|
1030 |
+
return Transformer2DModelOutput(sample=hidden_states)
|
1031 |
+
|
1032 |
+
return hidden_states,
|
diffusers_helper/pipelines/k_diffusion_hunyuan.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
|
4 |
+
from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc
|
5 |
+
from diffusers_helper.k_diffusion.wrapper import fm_wrapper
|
6 |
+
from diffusers_helper.utils import repeat_to_batch_size
|
7 |
+
|
8 |
+
|
9 |
+
def flux_time_shift(t, mu=1.15, sigma=1.0):
|
10 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
11 |
+
|
12 |
+
|
13 |
+
def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0):
|
14 |
+
k = (y2 - y1) / (x2 - x1)
|
15 |
+
b = y1 - k * x1
|
16 |
+
mu = k * context_length + b
|
17 |
+
mu = min(mu, math.log(exp_max))
|
18 |
+
return mu
|
19 |
+
|
20 |
+
|
21 |
+
def get_flux_sigmas_from_mu(n, mu):
|
22 |
+
sigmas = torch.linspace(1, 0, steps=n + 1)
|
23 |
+
sigmas = flux_time_shift(sigmas, mu=mu)
|
24 |
+
return sigmas
|
25 |
+
|
26 |
+
|
27 |
+
@torch.inference_mode()
|
28 |
+
def sample_hunyuan(
|
29 |
+
transformer,
|
30 |
+
sampler='unipc',
|
31 |
+
initial_latent=None,
|
32 |
+
concat_latent=None,
|
33 |
+
strength=1.0,
|
34 |
+
width=512,
|
35 |
+
height=512,
|
36 |
+
frames=16,
|
37 |
+
real_guidance_scale=1.0,
|
38 |
+
distilled_guidance_scale=6.0,
|
39 |
+
guidance_rescale=0.0,
|
40 |
+
shift=None,
|
41 |
+
num_inference_steps=25,
|
42 |
+
batch_size=None,
|
43 |
+
generator=None,
|
44 |
+
prompt_embeds=None,
|
45 |
+
prompt_embeds_mask=None,
|
46 |
+
prompt_poolers=None,
|
47 |
+
negative_prompt_embeds=None,
|
48 |
+
negative_prompt_embeds_mask=None,
|
49 |
+
negative_prompt_poolers=None,
|
50 |
+
dtype=torch.bfloat16,
|
51 |
+
device=None,
|
52 |
+
negative_kwargs=None,
|
53 |
+
callback=None,
|
54 |
+
**kwargs,
|
55 |
+
):
|
56 |
+
device = device or transformer.device
|
57 |
+
|
58 |
+
if batch_size is None:
|
59 |
+
batch_size = int(prompt_embeds.shape[0])
|
60 |
+
|
61 |
+
latents = torch.randn((batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device).to(device=device, dtype=torch.float32)
|
62 |
+
|
63 |
+
B, C, T, H, W = latents.shape
|
64 |
+
seq_length = T * H * W // 4
|
65 |
+
|
66 |
+
if shift is None:
|
67 |
+
mu = calculate_flux_mu(seq_length, exp_max=7.0)
|
68 |
+
else:
|
69 |
+
mu = math.log(shift)
|
70 |
+
|
71 |
+
sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device)
|
72 |
+
|
73 |
+
k_model = fm_wrapper(transformer)
|
74 |
+
|
75 |
+
if initial_latent is not None:
|
76 |
+
sigmas = sigmas * strength
|
77 |
+
first_sigma = sigmas[0].to(device=device, dtype=torch.float32)
|
78 |
+
initial_latent = initial_latent.to(device=device, dtype=torch.float32)
|
79 |
+
latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma
|
80 |
+
|
81 |
+
if concat_latent is not None:
|
82 |
+
concat_latent = concat_latent.to(latents)
|
83 |
+
|
84 |
+
distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype)
|
85 |
+
|
86 |
+
prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size)
|
87 |
+
prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size)
|
88 |
+
prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size)
|
89 |
+
negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size)
|
90 |
+
negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size)
|
91 |
+
negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size)
|
92 |
+
concat_latent = repeat_to_batch_size(concat_latent, batch_size)
|
93 |
+
|
94 |
+
sampler_kwargs = dict(
|
95 |
+
dtype=dtype,
|
96 |
+
cfg_scale=real_guidance_scale,
|
97 |
+
cfg_rescale=guidance_rescale,
|
98 |
+
concat_latent=concat_latent,
|
99 |
+
positive=dict(
|
100 |
+
pooled_projections=prompt_poolers,
|
101 |
+
encoder_hidden_states=prompt_embeds,
|
102 |
+
encoder_attention_mask=prompt_embeds_mask,
|
103 |
+
guidance=distilled_guidance,
|
104 |
+
**kwargs,
|
105 |
+
),
|
106 |
+
negative=dict(
|
107 |
+
pooled_projections=negative_prompt_poolers,
|
108 |
+
encoder_hidden_states=negative_prompt_embeds,
|
109 |
+
encoder_attention_mask=negative_prompt_embeds_mask,
|
110 |
+
guidance=distilled_guidance,
|
111 |
+
**(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}),
|
112 |
+
)
|
113 |
+
)
|
114 |
+
|
115 |
+
if sampler == 'unipc':
|
116 |
+
results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback)
|
117 |
+
else:
|
118 |
+
raise NotImplementedError(f'Sampler {sampler} is not supported.')
|
119 |
+
|
120 |
+
return results
|
diffusers_helper/thread_utils.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
from threading import Thread, Lock
|
4 |
+
|
5 |
+
|
6 |
+
class Listener:
|
7 |
+
task_queue = []
|
8 |
+
lock = Lock()
|
9 |
+
thread = None
|
10 |
+
|
11 |
+
@classmethod
|
12 |
+
def _process_tasks(cls):
|
13 |
+
while True:
|
14 |
+
task = None
|
15 |
+
with cls.lock:
|
16 |
+
if cls.task_queue:
|
17 |
+
task = cls.task_queue.pop(0)
|
18 |
+
|
19 |
+
if task is None:
|
20 |
+
time.sleep(0.001)
|
21 |
+
continue
|
22 |
+
|
23 |
+
func, args, kwargs = task
|
24 |
+
try:
|
25 |
+
func(*args, **kwargs)
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error in listener thread: {e}")
|
28 |
+
|
29 |
+
@classmethod
|
30 |
+
def add_task(cls, func, *args, **kwargs):
|
31 |
+
with cls.lock:
|
32 |
+
cls.task_queue.append((func, args, kwargs))
|
33 |
+
|
34 |
+
if cls.thread is None:
|
35 |
+
cls.thread = Thread(target=cls._process_tasks, daemon=True)
|
36 |
+
cls.thread.start()
|
37 |
+
|
38 |
+
|
39 |
+
def async_run(func, *args, **kwargs):
|
40 |
+
Listener.add_task(func, *args, **kwargs)
|
41 |
+
|
42 |
+
|
43 |
+
class FIFOQueue:
|
44 |
+
def __init__(self):
|
45 |
+
self.queue = []
|
46 |
+
self.lock = Lock()
|
47 |
+
|
48 |
+
def push(self, item):
|
49 |
+
with self.lock:
|
50 |
+
self.queue.append(item)
|
51 |
+
|
52 |
+
def pop(self):
|
53 |
+
with self.lock:
|
54 |
+
if self.queue:
|
55 |
+
return self.queue.pop(0)
|
56 |
+
return None
|
57 |
+
|
58 |
+
def top(self):
|
59 |
+
with self.lock:
|
60 |
+
if self.queue:
|
61 |
+
return self.queue[0]
|
62 |
+
return None
|
63 |
+
|
64 |
+
def next(self):
|
65 |
+
while True:
|
66 |
+
with self.lock:
|
67 |
+
if self.queue:
|
68 |
+
return self.queue.pop(0)
|
69 |
+
|
70 |
+
time.sleep(0.001)
|
71 |
+
|
72 |
+
|
73 |
+
class AsyncStream:
|
74 |
+
def __init__(self):
|
75 |
+
self.input_queue = FIFOQueue()
|
76 |
+
self.output_queue = FIFOQueue()
|
diffusers_helper/utils.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import json
|
4 |
+
import random
|
5 |
+
import glob
|
6 |
+
import torch
|
7 |
+
import einops
|
8 |
+
import numpy as np
|
9 |
+
import datetime
|
10 |
+
import torchvision
|
11 |
+
|
12 |
+
import safetensors.torch as sf
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
def min_resize(x, m):
|
17 |
+
if x.shape[0] < x.shape[1]:
|
18 |
+
s0 = m
|
19 |
+
s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
|
20 |
+
else:
|
21 |
+
s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
|
22 |
+
s1 = m
|
23 |
+
new_max = max(s1, s0)
|
24 |
+
raw_max = max(x.shape[0], x.shape[1])
|
25 |
+
if new_max < raw_max:
|
26 |
+
interpolation = cv2.INTER_AREA
|
27 |
+
else:
|
28 |
+
interpolation = cv2.INTER_LANCZOS4
|
29 |
+
y = cv2.resize(x, (s1, s0), interpolation=interpolation)
|
30 |
+
return y
|
31 |
+
|
32 |
+
|
33 |
+
def d_resize(x, y):
|
34 |
+
H, W, C = y.shape
|
35 |
+
new_min = min(H, W)
|
36 |
+
raw_min = min(x.shape[0], x.shape[1])
|
37 |
+
if new_min < raw_min:
|
38 |
+
interpolation = cv2.INTER_AREA
|
39 |
+
else:
|
40 |
+
interpolation = cv2.INTER_LANCZOS4
|
41 |
+
y = cv2.resize(x, (W, H), interpolation=interpolation)
|
42 |
+
return y
|
43 |
+
|
44 |
+
|
45 |
+
def resize_and_center_crop(image, target_width, target_height):
|
46 |
+
if target_height == image.shape[0] and target_width == image.shape[1]:
|
47 |
+
return image
|
48 |
+
|
49 |
+
pil_image = Image.fromarray(image)
|
50 |
+
original_width, original_height = pil_image.size
|
51 |
+
scale_factor = max(target_width / original_width, target_height / original_height)
|
52 |
+
resized_width = int(round(original_width * scale_factor))
|
53 |
+
resized_height = int(round(original_height * scale_factor))
|
54 |
+
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
|
55 |
+
left = (resized_width - target_width) / 2
|
56 |
+
top = (resized_height - target_height) / 2
|
57 |
+
right = (resized_width + target_width) / 2
|
58 |
+
bottom = (resized_height + target_height) / 2
|
59 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
60 |
+
return np.array(cropped_image)
|
61 |
+
|
62 |
+
|
63 |
+
def resize_and_center_crop_pytorch(image, target_width, target_height):
|
64 |
+
B, C, H, W = image.shape
|
65 |
+
|
66 |
+
if H == target_height and W == target_width:
|
67 |
+
return image
|
68 |
+
|
69 |
+
scale_factor = max(target_width / W, target_height / H)
|
70 |
+
resized_width = int(round(W * scale_factor))
|
71 |
+
resized_height = int(round(H * scale_factor))
|
72 |
+
|
73 |
+
resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False)
|
74 |
+
|
75 |
+
top = (resized_height - target_height) // 2
|
76 |
+
left = (resized_width - target_width) // 2
|
77 |
+
cropped = resized[:, :, top:top + target_height, left:left + target_width]
|
78 |
+
|
79 |
+
return cropped
|
80 |
+
|
81 |
+
|
82 |
+
def resize_without_crop(image, target_width, target_height):
|
83 |
+
if target_height == image.shape[0] and target_width == image.shape[1]:
|
84 |
+
return image
|
85 |
+
|
86 |
+
pil_image = Image.fromarray(image)
|
87 |
+
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
|
88 |
+
return np.array(resized_image)
|
89 |
+
|
90 |
+
|
91 |
+
def just_crop(image, w, h):
|
92 |
+
if h == image.shape[0] and w == image.shape[1]:
|
93 |
+
return image
|
94 |
+
|
95 |
+
original_height, original_width = image.shape[:2]
|
96 |
+
k = min(original_height / h, original_width / w)
|
97 |
+
new_width = int(round(w * k))
|
98 |
+
new_height = int(round(h * k))
|
99 |
+
x_start = (original_width - new_width) // 2
|
100 |
+
y_start = (original_height - new_height) // 2
|
101 |
+
cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width]
|
102 |
+
return cropped_image
|
103 |
+
|
104 |
+
|
105 |
+
def write_to_json(data, file_path):
|
106 |
+
temp_file_path = file_path + ".tmp"
|
107 |
+
with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
|
108 |
+
json.dump(data, temp_file, indent=4)
|
109 |
+
os.replace(temp_file_path, file_path)
|
110 |
+
return
|
111 |
+
|
112 |
+
|
113 |
+
def read_from_json(file_path):
|
114 |
+
with open(file_path, 'rt', encoding='utf-8') as file:
|
115 |
+
data = json.load(file)
|
116 |
+
return data
|
117 |
+
|
118 |
+
|
119 |
+
def get_active_parameters(m):
|
120 |
+
return {k: v for k, v in m.named_parameters() if v.requires_grad}
|
121 |
+
|
122 |
+
|
123 |
+
def cast_training_params(m, dtype=torch.float32):
|
124 |
+
result = {}
|
125 |
+
for n, param in m.named_parameters():
|
126 |
+
if param.requires_grad:
|
127 |
+
param.data = param.to(dtype)
|
128 |
+
result[n] = param
|
129 |
+
return result
|
130 |
+
|
131 |
+
|
132 |
+
def separate_lora_AB(parameters, B_patterns=None):
|
133 |
+
parameters_normal = {}
|
134 |
+
parameters_B = {}
|
135 |
+
|
136 |
+
if B_patterns is None:
|
137 |
+
B_patterns = ['.lora_B.', '__zero__']
|
138 |
+
|
139 |
+
for k, v in parameters.items():
|
140 |
+
if any(B_pattern in k for B_pattern in B_patterns):
|
141 |
+
parameters_B[k] = v
|
142 |
+
else:
|
143 |
+
parameters_normal[k] = v
|
144 |
+
|
145 |
+
return parameters_normal, parameters_B
|
146 |
+
|
147 |
+
|
148 |
+
def set_attr_recursive(obj, attr, value):
|
149 |
+
attrs = attr.split(".")
|
150 |
+
for name in attrs[:-1]:
|
151 |
+
obj = getattr(obj, name)
|
152 |
+
setattr(obj, attrs[-1], value)
|
153 |
+
return
|
154 |
+
|
155 |
+
|
156 |
+
def print_tensor_list_size(tensors):
|
157 |
+
total_size = 0
|
158 |
+
total_elements = 0
|
159 |
+
|
160 |
+
if isinstance(tensors, dict):
|
161 |
+
tensors = tensors.values()
|
162 |
+
|
163 |
+
for tensor in tensors:
|
164 |
+
total_size += tensor.nelement() * tensor.element_size()
|
165 |
+
total_elements += tensor.nelement()
|
166 |
+
|
167 |
+
total_size_MB = total_size / (1024 ** 2)
|
168 |
+
total_elements_B = total_elements / 1e9
|
169 |
+
|
170 |
+
print(f"Total number of tensors: {len(tensors)}")
|
171 |
+
print(f"Total size of tensors: {total_size_MB:.2f} MB")
|
172 |
+
print(f"Total number of parameters: {total_elements_B:.3f} billion")
|
173 |
+
return
|
174 |
+
|
175 |
+
|
176 |
+
@torch.no_grad()
|
177 |
+
def batch_mixture(a, b=None, probability_a=0.5, mask_a=None):
|
178 |
+
batch_size = a.size(0)
|
179 |
+
|
180 |
+
if b is None:
|
181 |
+
b = torch.zeros_like(a)
|
182 |
+
|
183 |
+
if mask_a is None:
|
184 |
+
mask_a = torch.rand(batch_size) < probability_a
|
185 |
+
|
186 |
+
mask_a = mask_a.to(a.device)
|
187 |
+
mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
|
188 |
+
result = torch.where(mask_a, a, b)
|
189 |
+
return result
|
190 |
+
|
191 |
+
|
192 |
+
@torch.no_grad()
|
193 |
+
def zero_module(module):
|
194 |
+
for p in module.parameters():
|
195 |
+
p.detach().zero_()
|
196 |
+
return module
|
197 |
+
|
198 |
+
|
199 |
+
@torch.no_grad()
|
200 |
+
def supress_lower_channels(m, k, alpha=0.01):
|
201 |
+
data = m.weight.data.clone()
|
202 |
+
|
203 |
+
assert int(data.shape[1]) >= k
|
204 |
+
|
205 |
+
data[:, :k] = data[:, :k] * alpha
|
206 |
+
m.weight.data = data.contiguous().clone()
|
207 |
+
return m
|
208 |
+
|
209 |
+
|
210 |
+
def freeze_module(m):
|
211 |
+
if not hasattr(m, '_forward_inside_frozen_module'):
|
212 |
+
m._forward_inside_frozen_module = m.forward
|
213 |
+
m.requires_grad_(False)
|
214 |
+
m.forward = torch.no_grad()(m.forward)
|
215 |
+
return m
|
216 |
+
|
217 |
+
|
218 |
+
def get_latest_safetensors(folder_path):
|
219 |
+
safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors'))
|
220 |
+
|
221 |
+
if not safetensors_files:
|
222 |
+
raise ValueError('No file to resume!')
|
223 |
+
|
224 |
+
latest_file = max(safetensors_files, key=os.path.getmtime)
|
225 |
+
latest_file = os.path.abspath(os.path.realpath(latest_file))
|
226 |
+
return latest_file
|
227 |
+
|
228 |
+
|
229 |
+
def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
|
230 |
+
tags = tags_str.split(', ')
|
231 |
+
tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
|
232 |
+
prompt = ', '.join(tags)
|
233 |
+
return prompt
|
234 |
+
|
235 |
+
|
236 |
+
def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0):
|
237 |
+
numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma)
|
238 |
+
if round_to_int:
|
239 |
+
numbers = np.round(numbers).astype(int)
|
240 |
+
return numbers.tolist()
|
241 |
+
|
242 |
+
|
243 |
+
def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False):
|
244 |
+
edges = np.linspace(0, 1, n + 1)
|
245 |
+
points = np.random.uniform(edges[:-1], edges[1:])
|
246 |
+
numbers = inclusive + (exclusive - inclusive) * points
|
247 |
+
if round_to_int:
|
248 |
+
numbers = np.round(numbers).astype(int)
|
249 |
+
return numbers.tolist()
|
250 |
+
|
251 |
+
|
252 |
+
def soft_append_bcthw(history, current, overlap=0):
|
253 |
+
if overlap <= 0:
|
254 |
+
return torch.cat([history, current], dim=2)
|
255 |
+
|
256 |
+
assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})"
|
257 |
+
assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})"
|
258 |
+
|
259 |
+
weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
|
260 |
+
blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
|
261 |
+
output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)
|
262 |
+
|
263 |
+
return output.to(history)
|
264 |
+
|
265 |
+
|
266 |
+
def save_bcthw_as_mp4(x, output_filename, fps=10):
|
267 |
+
b, c, t, h, w = x.shape
|
268 |
+
|
269 |
+
per_row = b
|
270 |
+
for p in [6, 5, 4, 3, 2]:
|
271 |
+
if b % p == 0:
|
272 |
+
per_row = p
|
273 |
+
break
|
274 |
+
|
275 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
276 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
277 |
+
x = x.detach().cpu().to(torch.uint8)
|
278 |
+
x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
|
279 |
+
torchvision.io.write_video(output_filename, x, fps=fps, video_codec='h264', options={'crf': '0'})
|
280 |
+
return x
|
281 |
+
|
282 |
+
|
283 |
+
def save_bcthw_as_png(x, output_filename):
|
284 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
285 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
286 |
+
x = x.detach().cpu().to(torch.uint8)
|
287 |
+
x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
|
288 |
+
torchvision.io.write_png(x, output_filename)
|
289 |
+
return output_filename
|
290 |
+
|
291 |
+
|
292 |
+
def save_bchw_as_png(x, output_filename):
|
293 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
294 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
295 |
+
x = x.detach().cpu().to(torch.uint8)
|
296 |
+
x = einops.rearrange(x, 'b c h w -> c h (b w)')
|
297 |
+
torchvision.io.write_png(x, output_filename)
|
298 |
+
return output_filename
|
299 |
+
|
300 |
+
|
301 |
+
def add_tensors_with_padding(tensor1, tensor2):
|
302 |
+
if tensor1.shape == tensor2.shape:
|
303 |
+
return tensor1 + tensor2
|
304 |
+
|
305 |
+
shape1 = tensor1.shape
|
306 |
+
shape2 = tensor2.shape
|
307 |
+
|
308 |
+
new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))
|
309 |
+
|
310 |
+
padded_tensor1 = torch.zeros(new_shape)
|
311 |
+
padded_tensor2 = torch.zeros(new_shape)
|
312 |
+
|
313 |
+
padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
|
314 |
+
padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2
|
315 |
+
|
316 |
+
result = padded_tensor1 + padded_tensor2
|
317 |
+
return result
|
318 |
+
|
319 |
+
|
320 |
+
def print_free_mem():
|
321 |
+
torch.cuda.empty_cache()
|
322 |
+
free_mem, total_mem = torch.cuda.mem_get_info(0)
|
323 |
+
free_mem_mb = free_mem / (1024 ** 2)
|
324 |
+
total_mem_mb = total_mem / (1024 ** 2)
|
325 |
+
print(f"Free memory: {free_mem_mb:.2f} MB")
|
326 |
+
print(f"Total memory: {total_mem_mb:.2f} MB")
|
327 |
+
return
|
328 |
+
|
329 |
+
|
330 |
+
def print_gpu_parameters(device, state_dict, log_count=1):
|
331 |
+
summary = {"device": device, "keys_count": len(state_dict)}
|
332 |
+
|
333 |
+
logged_params = {}
|
334 |
+
for i, (key, tensor) in enumerate(state_dict.items()):
|
335 |
+
if i >= log_count:
|
336 |
+
break
|
337 |
+
logged_params[key] = tensor.flatten()[:3].tolist()
|
338 |
+
|
339 |
+
summary["params"] = logged_params
|
340 |
+
|
341 |
+
print(str(summary))
|
342 |
+
return
|
343 |
+
|
344 |
+
|
345 |
+
def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18):
|
346 |
+
from PIL import Image, ImageDraw, ImageFont
|
347 |
+
|
348 |
+
txt = Image.new("RGB", (width, height), color="white")
|
349 |
+
draw = ImageDraw.Draw(txt)
|
350 |
+
font = ImageFont.truetype(font_path, size=size)
|
351 |
+
|
352 |
+
if text == '':
|
353 |
+
return np.array(txt)
|
354 |
+
|
355 |
+
# Split text into lines that fit within the image width
|
356 |
+
lines = []
|
357 |
+
words = text.split()
|
358 |
+
current_line = words[0]
|
359 |
+
|
360 |
+
for word in words[1:]:
|
361 |
+
line_with_word = f"{current_line} {word}"
|
362 |
+
if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width:
|
363 |
+
current_line = line_with_word
|
364 |
+
else:
|
365 |
+
lines.append(current_line)
|
366 |
+
current_line = word
|
367 |
+
|
368 |
+
lines.append(current_line)
|
369 |
+
|
370 |
+
# Draw the text line by line
|
371 |
+
y = 0
|
372 |
+
line_height = draw.textbbox((0, 0), "A", font=font)[3]
|
373 |
+
|
374 |
+
for line in lines:
|
375 |
+
if y + line_height > height:
|
376 |
+
break # stop drawing if the next line will be outside the image
|
377 |
+
draw.text((0, y), line, fill="black", font=font)
|
378 |
+
y += line_height
|
379 |
+
|
380 |
+
return np.array(txt)
|
381 |
+
|
382 |
+
|
383 |
+
def blue_mark(x):
|
384 |
+
x = x.copy()
|
385 |
+
c = x[:, :, 2]
|
386 |
+
b = cv2.blur(c, (9, 9))
|
387 |
+
x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1)
|
388 |
+
return x
|
389 |
+
|
390 |
+
|
391 |
+
def green_mark(x):
|
392 |
+
x = x.copy()
|
393 |
+
x[:, :, 2] = -1
|
394 |
+
x[:, :, 0] = -1
|
395 |
+
return x
|
396 |
+
|
397 |
+
|
398 |
+
def frame_mark(x):
|
399 |
+
x = x.copy()
|
400 |
+
x[:64] = -1
|
401 |
+
x[-64:] = -1
|
402 |
+
x[:, :8] = 1
|
403 |
+
x[:, -8:] = 1
|
404 |
+
return x
|
405 |
+
|
406 |
+
|
407 |
+
@torch.inference_mode()
|
408 |
+
def pytorch2numpy(imgs):
|
409 |
+
results = []
|
410 |
+
for x in imgs:
|
411 |
+
y = x.movedim(0, -1)
|
412 |
+
y = y * 127.5 + 127.5
|
413 |
+
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
|
414 |
+
results.append(y)
|
415 |
+
return results
|
416 |
+
|
417 |
+
|
418 |
+
@torch.inference_mode()
|
419 |
+
def numpy2pytorch(imgs):
|
420 |
+
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
|
421 |
+
h = h.movedim(-1, 1)
|
422 |
+
return h
|
423 |
+
|
424 |
+
|
425 |
+
@torch.no_grad()
|
426 |
+
def duplicate_prefix_to_suffix(x, count, zero_out=False):
|
427 |
+
if zero_out:
|
428 |
+
return torch.cat([x, torch.zeros_like(x[:count])], dim=0)
|
429 |
+
else:
|
430 |
+
return torch.cat([x, x[:count]], dim=0)
|
431 |
+
|
432 |
+
|
433 |
+
def weighted_mse(a, b, weight):
|
434 |
+
return torch.mean(weight.float() * (a.float() - b.float()) ** 2)
|
435 |
+
|
436 |
+
|
437 |
+
def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0):
|
438 |
+
x = (x - x_min) / (x_max - x_min)
|
439 |
+
x = max(0.0, min(x, 1.0))
|
440 |
+
x = x ** sigma
|
441 |
+
return y_min + x * (y_max - y_min)
|
442 |
+
|
443 |
+
|
444 |
+
def expand_to_dims(x, target_dims):
|
445 |
+
return x.view(*x.shape, *([1] * max(0, target_dims - x.dim())))
|
446 |
+
|
447 |
+
|
448 |
+
def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int):
|
449 |
+
if tensor is None:
|
450 |
+
return None
|
451 |
+
|
452 |
+
first_dim = tensor.shape[0]
|
453 |
+
|
454 |
+
if first_dim == batch_size:
|
455 |
+
return tensor
|
456 |
+
|
457 |
+
if batch_size % first_dim != 0:
|
458 |
+
raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.")
|
459 |
+
|
460 |
+
repeat_times = batch_size // first_dim
|
461 |
+
|
462 |
+
return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1))
|
463 |
+
|
464 |
+
|
465 |
+
def dim5(x):
|
466 |
+
return expand_to_dims(x, 5)
|
467 |
+
|
468 |
+
|
469 |
+
def dim4(x):
|
470 |
+
return expand_to_dims(x, 4)
|
471 |
+
|
472 |
+
|
473 |
+
def dim3(x):
|
474 |
+
return expand_to_dims(x, 3)
|
475 |
+
|
476 |
+
|
477 |
+
def crop_or_pad_yield_mask(x, length):
|
478 |
+
B, F, C = x.shape
|
479 |
+
device = x.device
|
480 |
+
dtype = x.dtype
|
481 |
+
|
482 |
+
if F < length:
|
483 |
+
y = torch.zeros((B, length, C), dtype=dtype, device=device)
|
484 |
+
mask = torch.zeros((B, length), dtype=torch.bool, device=device)
|
485 |
+
y[:, :F, :] = x
|
486 |
+
mask[:, :F] = True
|
487 |
+
return y, mask
|
488 |
+
|
489 |
+
return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device)
|
490 |
+
|
491 |
+
|
492 |
+
def extend_dim(x, dim, minimal_length, zero_pad=False):
|
493 |
+
original_length = int(x.shape[dim])
|
494 |
+
|
495 |
+
if original_length >= minimal_length:
|
496 |
+
return x
|
497 |
+
|
498 |
+
if zero_pad:
|
499 |
+
padding_shape = list(x.shape)
|
500 |
+
padding_shape[dim] = minimal_length - original_length
|
501 |
+
padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device)
|
502 |
+
else:
|
503 |
+
idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1)
|
504 |
+
last_element = x[idx]
|
505 |
+
padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim)
|
506 |
+
|
507 |
+
return torch.cat([x, padding], dim=dim)
|
508 |
+
|
509 |
+
|
510 |
+
def lazy_positional_encoding(t, repeats=None):
|
511 |
+
if not isinstance(t, list):
|
512 |
+
t = [t]
|
513 |
+
|
514 |
+
from diffusers.models.embeddings import get_timestep_embedding
|
515 |
+
|
516 |
+
te = torch.tensor(t)
|
517 |
+
te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0)
|
518 |
+
|
519 |
+
if repeats is None:
|
520 |
+
return te
|
521 |
+
|
522 |
+
te = te[:, None, :].expand(-1, repeats, -1)
|
523 |
+
|
524 |
+
return te
|
525 |
+
|
526 |
+
|
527 |
+
def state_dict_offset_merge(A, B, C=None):
|
528 |
+
result = {}
|
529 |
+
keys = A.keys()
|
530 |
+
|
531 |
+
for key in keys:
|
532 |
+
A_value = A[key]
|
533 |
+
B_value = B[key].to(A_value)
|
534 |
+
|
535 |
+
if C is None:
|
536 |
+
result[key] = A_value + B_value
|
537 |
+
else:
|
538 |
+
C_value = C[key].to(A_value)
|
539 |
+
result[key] = A_value + B_value - C_value
|
540 |
+
|
541 |
+
return result
|
542 |
+
|
543 |
+
|
544 |
+
def state_dict_weighted_merge(state_dicts, weights):
|
545 |
+
if len(state_dicts) != len(weights):
|
546 |
+
raise ValueError("Number of state dictionaries must match number of weights")
|
547 |
+
|
548 |
+
if not state_dicts:
|
549 |
+
return {}
|
550 |
+
|
551 |
+
total_weight = sum(weights)
|
552 |
+
|
553 |
+
if total_weight == 0:
|
554 |
+
raise ValueError("Sum of weights cannot be zero")
|
555 |
+
|
556 |
+
normalized_weights = [w / total_weight for w in weights]
|
557 |
+
|
558 |
+
keys = state_dicts[0].keys()
|
559 |
+
result = {}
|
560 |
+
|
561 |
+
for key in keys:
|
562 |
+
result[key] = state_dicts[0][key] * normalized_weights[0]
|
563 |
+
|
564 |
+
for i in range(1, len(state_dicts)):
|
565 |
+
state_dict_value = state_dicts[i][key].to(result[key])
|
566 |
+
result[key] += state_dict_value * normalized_weights[i]
|
567 |
+
|
568 |
+
return result
|
569 |
+
|
570 |
+
|
571 |
+
def group_files_by_folder(all_files):
|
572 |
+
grouped_files = {}
|
573 |
+
|
574 |
+
for file in all_files:
|
575 |
+
folder_name = os.path.basename(os.path.dirname(file))
|
576 |
+
if folder_name not in grouped_files:
|
577 |
+
grouped_files[folder_name] = []
|
578 |
+
grouped_files[folder_name].append(file)
|
579 |
+
|
580 |
+
list_of_lists = list(grouped_files.values())
|
581 |
+
return list_of_lists
|
582 |
+
|
583 |
+
|
584 |
+
def generate_timestamp():
|
585 |
+
now = datetime.datetime.now()
|
586 |
+
timestamp = now.strftime('%y%m%d_%H%M%S')
|
587 |
+
milliseconds = f"{int(now.microsecond / 1000):03d}"
|
588 |
+
random_number = random.randint(0, 9999)
|
589 |
+
return f"{timestamp}_{milliseconds}_{random_number}"
|
590 |
+
|
591 |
+
|
592 |
+
def write_PIL_image_with_png_info(image, metadata, path):
|
593 |
+
from PIL.PngImagePlugin import PngInfo
|
594 |
+
|
595 |
+
png_info = PngInfo()
|
596 |
+
for key, value in metadata.items():
|
597 |
+
png_info.add_text(key, value)
|
598 |
+
|
599 |
+
image.save(path, "PNG", pnginfo=png_info)
|
600 |
+
return image
|
601 |
+
|
602 |
+
|
603 |
+
def torch_safe_save(content, path):
|
604 |
+
torch.save(content, path + '_tmp')
|
605 |
+
os.replace(path + '_tmp', path)
|
606 |
+
return path
|
607 |
+
|
608 |
+
|
609 |
+
def move_optimizer_to_device(optimizer, device):
|
610 |
+
for state in optimizer.state.values():
|
611 |
+
for k, v in state.items():
|
612 |
+
if isinstance(v, torch.Tensor):
|
613 |
+
state[k] = v.to(device)
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==1.6.0
|
2 |
+
diffusers==0.33.1
|
3 |
+
transformers==4.46.2
|
4 |
+
gradio==5.23.0
|
5 |
+
sentencepiece==0.2.0
|
6 |
+
pillow==11.1.0
|
7 |
+
av==12.1.0
|
8 |
+
numpy==1.26.2
|
9 |
+
scipy==1.12.0
|
10 |
+
requests==2.31.0
|
11 |
+
torchsde==0.2.6
|
12 |
+
|
13 |
+
einops
|
14 |
+
opencv-contrib-python
|
15 |
+
safetensors
|