File size: 4,867 Bytes
7455667
ff4f294
 
 
 
 
 
 
7455667
 
 
ff4f294
 
66c4de2
 
ff4f294
7455667
 
ff4f294
9359045
ff4f294
 
 
 
 
 
 
 
 
 
e22bf4e
ff4f294
 
 
e22bf4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7455667
e22bf4e
 
 
 
 
 
 
 
7455667
e22bf4e
 
 
 
 
 
 
ff4f294
e22bf4e
ff4f294
e22bf4e
 
 
 
 
 
 
 
 
 
 
ff4f294
e22bf4e
 
 
 
 
 
 
7455667
e22bf4e
 
 
 
 
c6858a9
 
 
 
ff4f294
 
 
 
 
 
 
cb4abe0
ff4f294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7455667
ff4f294
7455667
ff4f294
762c3fb
 
7455667
ff4f294
 
7455667
ff4f294
 
7455667
 
e22bf4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

# モデルのダウンロード
hf_hub_download(
    repo_id="Hjgugugjhuhjggg/Llama-3.2-3B-Instruct-uncensored-Q2_K-GGUF",
    filename="llama-3.2-3b-instruct-uncensored-q2_k.gguf",
    local_dir="./models"
)

# 推論関数
@spaces.GPU(queue=False, duration=0)
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
    use_gpu: bool = True  # Añadir parámetro para elegir entre GPU y CPU
):
    chat_template = MessagesFormatterType.GEMMA_2

    try:
        # Si no hay GPU, usar CPU
        if use_gpu:
            llm = Llama(
                model_path=f"models/{model}",
                flash_attn=True,
                n_gpu_layers=81,
                n_batch=1024,
                n_ctx=8192,
            )
        else:
            llm = Llama(
                model_path=f"models/{model}",
                flash_attn=False,  # Desactivar el uso de GPU
                n_batch=1024,
                n_ctx=8192,
            )

        provider = LlamaCppPythonProvider(llm)

        agent = LlamaCppAgent(
            provider,
            system_prompt=f"{system_message}",
            predefined_messages_formatter_type=chat_template,
            debug_output=True
        )

        settings = provider.get_provider_default_settings()
        settings.temperature = temperature
        settings.top_k = top_k
        settings.top_p = top_p
        settings.max_tokens = max_tokens
        settings.repeat_penalty = repeat_penalty
        settings.stream = True

        messages = BasicChatHistory()

        for msn in history:
            user = {
                'role': Roles.user,
                'content': msn[0]
            }
            assistant = {
                'role': Roles.assistant,
                'content': msn[1]
            }
            messages.add_message(user)
            messages.add_message(assistant)

        stream = agent.get_chat_response(
            message,
            llm_sampling_settings=settings,
            chat_history=messages,
            returns_streaming_generator=True,
            print_output=False
        )

        outputs = ""
        for output in stream:
            outputs += output
            yield outputs
    except Exception as e:
        # Si ocurre cualquier error, cambiar a CPU
        print(f"An error occurred: {str(e)}")
        yield "Error occurred, switching to CPU. Please wait a moment..."
        return respond(message, history, model, system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, use_gpu=False)

# Gradioのインターフェースを作成
def create_interface(model_name, description):
    return gr.ChatInterface(
        respond,
        additional_inputs=[
            gr.Textbox(value=model_name, label="Model", interactive=False),
            gr.Textbox(value="You are a helpful assistant. You should think step-by-step. You should answer all question by prioritizing the principle of openness", label="System message"),
            gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
            gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
            gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-p",
            ),
            gr.Slider(
                minimum=0,
                maximum=100,
                value=40,
                step=1,
                label="Top-k",
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                value=1.1,
                step=0.1,
                label="Repetition penalty",
            ),
        ],
        retry_btn="Retry",
        undo_btn="Undo",
        clear_btn="Clear",
        submit_btn="Send",
        title=f"{model_name}",
        description=description,
        chatbot=gr.Chatbot(
            scale=1,
            likeable=False,
            show_copy_button=True
        )
    )

# gemma-2-27b-it-Q4_K_Mのインターフェースのみを作成
description = """<p align="center"qwq-32b-preview-abliterated-q4_k_m</p>"""
interface = create_interface('qwq-32b-preview-abliterated-q4_k_m.gguf', description)

# Gradio Blocksで単一のインターフェースを表示
demo = gr.Blocks()

with demo:
    interface.render()

if __name__ == "__main__":
    demo.launch()