Upload 2 files
Browse files- app.py +30 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
import joblib
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Load model from Hub
|
8 |
+
model_repo = "leorigasaki54/earthquake-magnitude-predictor"
|
9 |
+
model = joblib.load(hf_hub_download(repo_id=model_repo, filename="rf_earthquake_mag.joblib"))
|
10 |
+
|
11 |
+
def predict(feature1, feature2, feature3, feature4, feature5):
|
12 |
+
input_data = np.array([[feature1, feature2, feature3, feature4, feature5]])
|
13 |
+
return model.predict(input_data)[0]
|
14 |
+
|
15 |
+
# Adjust labels/features based on your model's input requirements
|
16 |
+
inputs = [
|
17 |
+
gr.Number(label="Feature 1 (e.g., Seismic Signal)"),
|
18 |
+
gr.Number(label="Feature 2 (e.g., Depth)"),
|
19 |
+
gr.Number(label="Feature 3 (e.g., Latitude)"),
|
20 |
+
gr.Number(label="Feature 4 (e.g., Longitude)"),
|
21 |
+
gr.Number(label="Feature 5 (e.g., Station Distance)")
|
22 |
+
]
|
23 |
+
|
24 |
+
gr.Interface(
|
25 |
+
fn=predict,
|
26 |
+
inputs=inputs,
|
27 |
+
outputs=gr.Number(label="Predicted Magnitude"),
|
28 |
+
title="Earthquake Magnitude Predictor",
|
29 |
+
description="Predict earthquake magnitude using seismic data"
|
30 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0
|
2 |
+
scikit-learn>=1.0
|
3 |
+
joblib
|
4 |
+
huggingface-hub
|
5 |
+
numpy
|