kjn1009 commited on
Commit
b60902e
ยท
verified ยท
1 Parent(s): 6c66d15

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision.transforms as transforms
3
+ from torchvision import models
4
+ from PIL import Image
5
+ import gradio as gr
6
+
7
+ # ๋ชจ๋ธ ํด๋ž˜์Šค ์ •์˜ (์˜ˆ: EfficientNet)
8
+ class MyModel(torch.nn.Module):
9
+ def __init__(self, num_classes):
10
+ super(MyModel, self).__init__()
11
+ self.model = models.efficientnet_b0(pretrained=False, num_classes=num_classes)
12
+
13
+ def forward(self, x):
14
+ return self.model(x)
15
+
16
+ # ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
17
+ num_classes = 6 # ํด๋ž˜์Šค ์ˆ˜์— ๋งž๊ฒŒ ์„ค์ •
18
+ model = MyModel(num_classes)
19
+ model.load_state_dict(torch.load('resnet18_finetuned_2.pth'), strict=False)
20
+ model.eval()
21
+
22
+ # ๋ฐ์ดํ„ฐ ๋ณ€ํ™˜ ์ •์˜
23
+ transform = transforms.Compose([
24
+ transforms.Resize((224, 224)),
25
+ transforms.ToTensor(),
26
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
27
+ ])
28
+
29
+ # ํด๋ž˜์Šค ์ด๋ฆ„ ๋ฆฌ์ŠคํŠธ ์ •์˜
30
+ class_names = ['disposablecup', 'envmark', 'label', 'mug', 'nonlabel', 'reusablecup']
31
+
32
+ # ์˜ˆ์ธก ํ•จ์ˆ˜ ์ •์˜
33
+ def predict(image):
34
+ image = transform(image).unsqueeze(0) # ๋ฐฐ์น˜ ์ฐจ์› ์ถ”๊ฐ€
35
+ with torch.no_grad():
36
+ outputs = model(image)
37
+ _, predicted = torch.max(outputs, 1)
38
+ # ํด๋ž˜์Šค ์ธ๋ฑ์Šค๋ฅผ ํด๋ž˜์Šค ์ด๋ฆ„์œผ๋กœ ๋ณ€ํ™˜
39
+ label = class_names[predicted.item()]
40
+ print("Predicted label:", label) # ์˜ˆ์ธก๋œ ๋ ˆ์ด๋ธ” ์ถœ๋ ฅ
41
+ return label
42
+
43
+ # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์„ค์ •
44
+ iface = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs='label', live=True)
45
+ iface.launch()