Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
from torchvision import models
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# ๋ชจ๋ธ ํด๋์ค ์ ์ (์: EfficientNet)
|
8 |
+
class MyModel(torch.nn.Module):
|
9 |
+
def __init__(self, num_classes):
|
10 |
+
super(MyModel, self).__init__()
|
11 |
+
self.model = models.efficientnet_b0(pretrained=False, num_classes=num_classes)
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
return self.model(x)
|
15 |
+
|
16 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ
|
17 |
+
num_classes = 6 # ํด๋์ค ์์ ๋ง๊ฒ ์ค์
|
18 |
+
model = MyModel(num_classes)
|
19 |
+
model.load_state_dict(torch.load('resnet18_finetuned_2.pth'), strict=False)
|
20 |
+
model.eval()
|
21 |
+
|
22 |
+
# ๋ฐ์ดํฐ ๋ณํ ์ ์
|
23 |
+
transform = transforms.Compose([
|
24 |
+
transforms.Resize((224, 224)),
|
25 |
+
transforms.ToTensor(),
|
26 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
27 |
+
])
|
28 |
+
|
29 |
+
# ํด๋์ค ์ด๋ฆ ๋ฆฌ์คํธ ์ ์
|
30 |
+
class_names = ['disposablecup', 'envmark', 'label', 'mug', 'nonlabel', 'reusablecup']
|
31 |
+
|
32 |
+
# ์์ธก ํจ์ ์ ์
|
33 |
+
def predict(image):
|
34 |
+
image = transform(image).unsqueeze(0) # ๋ฐฐ์น ์ฐจ์ ์ถ๊ฐ
|
35 |
+
with torch.no_grad():
|
36 |
+
outputs = model(image)
|
37 |
+
_, predicted = torch.max(outputs, 1)
|
38 |
+
# ํด๋์ค ์ธ๋ฑ์ค๋ฅผ ํด๋์ค ์ด๋ฆ์ผ๋ก ๋ณํ
|
39 |
+
label = class_names[predicted.item()]
|
40 |
+
print("Predicted label:", label) # ์์ธก๋ ๋ ์ด๋ธ ์ถ๋ ฅ
|
41 |
+
return label
|
42 |
+
|
43 |
+
# Gradio ์ธํฐํ์ด์ค ์ค์
|
44 |
+
iface = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs='label', live=True)
|
45 |
+
iface.launch()
|