File size: 16,875 Bytes
2e99c77
dc57c3d
2e99c77
 
dc57c3d
 
2e99c77
 
 
 
 
 
 
 
 
7e48432
2e99c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5f5c4
2e99c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185d8a7
 
 
2e99c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5f5c4
 
2e99c77
dc57c3d
 
 
 
 
 
 
 
 
2e99c77
1a5f5c4
2e99c77
1a5f5c4
2e99c77
 
 
 
1a5f5c4
 
2e99c77
 
1a5f5c4
2e99c77
 
 
 
1a5f5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e99c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5f5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e99c77
1a5f5c4
2e99c77
 
 
 
 
1a5f5c4
2e99c77
 
 
1a5f5c4
 
 
 
 
2e99c77
1a5f5c4
2e99c77
 
 
1a5f5c4
2e99c77
 
1a5f5c4
 
0210dff
7c7451a
 
 
 
 
 
 
 
 
 
 
 
 
0210dff
7c7451a
 
 
0210dff
1a5f5c4
 
2e99c77
 
 
1a5f5c4
2e99c77
 
 
 
 
 
 
1675360
2e99c77
 
 
 
 
 
 
 
1a5f5c4
2e99c77
 
 
1a5f5c4
2e99c77
 
 
1a5f5c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e99c77
 
 
 
 
 
 
 
 
1a5f5c4
2e99c77
 
1a5f5c4
 
2e99c77
 
 
 
 
1a5f5c4
2e99c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5f5c4
 
 
 
 
 
 
2e99c77
 
1a5f5c4
 
2e99c77
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import os
import sys
import time
import hashlib
import site
import subprocess

import gradio as gr
import torch
import torchaudio
import numpy as np

from underthesea import sent_tokenize
from df.enhance import enhance, init_df, load_audio, save_audio

from huggingface_hub import snapshot_download

from langdetect import detect

from utils.vietnamese_normalization import normalize_vietnamese_text
from utils.logger import setup_logger
from utils.sentence import split_sentence, merge_sentences

import warnings
warnings.filterwarnings("ignore")

logger = setup_logger(__file__)

df_model, df_state = None, None

APP_DIR = os.path.dirname(os.path.abspath(__file__))
checkpoint_dir=f"{APP_DIR}/cache"
temp_dir=f"{APP_DIR}/cache/temp/"
sample_audio_dir=f"{APP_DIR}/cache/audio_samples/"
enhance_audio_dir=f"{APP_DIR}/cache/audio_enhances/"
speakers_dir=f"{APP_DIR}/cache/speakers/"
for d in [checkpoint_dir, temp_dir, sample_audio_dir, enhance_audio_dir]:
    os.makedirs(d, exist_ok=True)

language_dict = {'English': 'en', 'Español (Spanish)': 'es', 'Français (French)': 'fr', 
                 'Deutsch (German)': 'de', 'Italiano (Italian)': 'it', 'Português (Portuguese)': 'pt', 
                 'Polski (Polish)': 'pl', 'Türkçe (Turkish)': 'tr', 'Русский (Russian)': 'ru', 
                 'Nederlands (Dutch)': 'nl', 'Čeština (Czech)': 'cs', 'العربية (Arabic)': 'ar', '中文 (Chinese)': 'zh-cn',
                 'Magyar nyelv (Hungarian)': 'hu', '한국어 (Korean)': 'ko', '日本語 (Japanese)': 'ja', 
                 'Tiếng Việt (Vietnamese)': 'vi', 'Auto': 'auto'}

default_language = 'Auto'
language_codes = [v for _, v in language_dict.items()]
def lang_detect(text):
    try:
        lang = detect(text)
        if lang == 'zh-tw':
            return 'zh-cn'
        return lang if lang in language_codes else 'en'
    except:
        return 'en'

input_text_max_length = 3000
use_deepspeed = False

try:
    import spaces
except ImportError:
    from utils import spaces

xtts_model = None
def load_model():
    global xtts_model

    from TTS.tts.configs.xtts_config import XttsConfig
    from TTS.tts.models.xtts import Xtts
    
    repo_id = "jimmyvu/xtts"
    snapshot_download(repo_id=repo_id, 
                      local_dir=checkpoint_dir, 
                      allow_patterns=["*.safetensors", "*.wav", "*.json"], 
                      ignore_patterns="*.pth")

    config = XttsConfig()
    config.load_json(os.path.join(checkpoint_dir, "config.json"))
    xtts_model = Xtts.init_from_config(config)

    logger.info("Loading model...")
    xtts_model.load_safetensors_checkpoint(
        config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
    )
    if torch.cuda.is_available():
        xtts_model.cuda()
    logger.info(f"Successfully loaded model from {checkpoint_dir}")

load_model()    
    

def download_unidic():
    site_package_path = site.getsitepackages()[0]
    unidic_path = os.path.join(site_package_path, "unidic", "dicdir")
    if not os.path.exists(unidic_path):
        logger.info("Downloading unidic...")
        subprocess.call([sys.executable, "-m", "unidic", "download"])

download_unidic()

default_speaker_reference_audio = os.path.join(sample_audio_dir, 'harvard.wav')
default_speaker_id = "Aaron Dreschner"

def validate_input(input_text, language):
    log_messages = ""
    if len(input_text) > input_text_max_length:
        gr.Warning("Text is too long! Please provide a shorter text.")
        log_messages += "Text is too long! Please provide a shorter text.\n"
        return log_messages
    
    language_code = language_dict.get(language, 'en')
    logger.info(f"Language [{language}], code: [{language_code}]")
    lang = lang_detect(input_text) if language == 'Auto' else language_code
    if (lang not in ['ja', 'kr', 'zh-cn'] and len(input_text.split()) < 2) or \
        (lang in ['ja', 'kr', 'zh-cn'] and len(input_text) < 2):
        gr.Warning("Text is too short! Please provide a longer text.")
        log_messages += "Text is too short! Please provide a longer text.\n"
        
    return log_messages
    
@spaces.GPU
def synthesize_speech(input_text, speaker_id, temperature=0.3, top_p=0.85, top_k=50, repetition_penalty=10.0, language='Auto'):
    """Process text and generate audio."""
    global xtts_model
    log_messages = validate_input(input_text, language)
    if log_messages: 
        return None, log_messages

    start = time.time()
    logger.info(f"Start processing text: {input_text[:30]}... [length: {len(input_text)}]")
    # inference
    wav_array, num_of_tokens = inference(input_text=input_text, 
                          language=language,
                          speaker_id=speaker_id, 
                          gpt_cond_latent=None, 
                          speaker_embedding=None, 
                          temperature=temperature, 
                          top_p=top_p, 
                          top_k=top_k, 
                          repetition_penalty=float(repetition_penalty))
    end = time.time()
    processing_time = end - start
    tokens_per_second = num_of_tokens/processing_time
    logger.info(f"End processing text: {input_text[:30]}")
    message = f"💡 {tokens_per_second:.1f} tok/s • {num_of_tokens} tokens • in {processing_time:.2f} seconds"
    logger.info(message)
    log_messages += message
    return (24000, wav_array), log_messages
    

@spaces.GPU
def generate_speech(input_text, speaker_reference_audio, enhance_speech, temperature=0.3, top_p=0.85, top_k=50, repetition_penalty=10.0, language='Auto'):
    """Process text and generate audio."""
    global df_model, df_state, xtts_model
    log_messages = validate_input(input_text, language)
    if log_messages: 
        return None, log_messages
    
    if not speaker_reference_audio:
        gr.Warning("Please provide at least one reference audio!")
        log_messages += "Please provide at least one reference audio!\n"
        return None, log_messages

    start = time.time()
    logger.info(f"Start processing text: {input_text[:30]}... [length: {len(input_text)}]")
    
    if enhance_speech:
        logger.info("Enhancing reference audio...")
        _, audio_file = os.path.split(speaker_reference_audio)
        enhanced_audio_path = os.path.join(enhance_audio_dir, f"{audio_file}.enh.wav")
        if not os.path.exists(enhanced_audio_path):
            if not df_model:
                df_model, df_state, _ = init_df()
            audio, _ = load_audio(speaker_reference_audio, sr=df_state.sr())
            # denoise audio
            enhanced_audio = enhance(df_model, df_state, audio)
            # save enhanced audio
            save_audio(enhanced_audio_path, enhanced_audio, sr=df_state.sr())
        speaker_reference_audio = enhanced_audio_path

    gpt_cond_latent, speaker_embedding = xtts_model.get_conditioning_latents(
        audio_path=speaker_reference_audio,
        gpt_cond_len=xtts_model.config.gpt_cond_len,
        max_ref_length=xtts_model.config.max_ref_len,
        sound_norm_refs=xtts_model.config.sound_norm_refs,
    )
    
    # inference
    wav_array, num_of_tokens = inference(input_text=input_text, 
                          language=language,
                          speaker_id=None, 
                          gpt_cond_latent=gpt_cond_latent, 
                          speaker_embedding=speaker_embedding, 
                          temperature=temperature, 
                          top_p=top_p, 
                          top_k=top_k, 
                          repetition_penalty=float(repetition_penalty))
    end = time.time()
    processing_time = end - start
    tokens_per_second = num_of_tokens/processing_time
    logger.info(f"End processing text: {input_text[:30]}")
    message = f"💡 {tokens_per_second:.1f} tok/s • {num_of_tokens} tokens • in {processing_time:.2f} seconds"
    logger.info(message)
    log_messages += message
    return (24000, wav_array), log_messages


def inference(input_text, language, speaker_id=None, gpt_cond_latent=None, speaker_embedding=None, temperature=0.3, top_p=0.85, top_k=50, repetition_penalty=10.0):
    language_code = lang_detect(input_text) if language == 'Auto' else language_dict.get(language, 'en')
    # Split text by sentence
    if language_code in ["ja", "zh-cn"]:
        sentences = input_text.split("。")
    else:
        sentences = sent_tokenize(input_text)
    # merge short sentences to next/prev ones
    sentences = merge_sentences(sentences)
    
    # set dynamic length penalty from -1.0 to 1,0 based on text length
    max_text_length = 180
    dynamic_length_penalty = lambda text_length: (2 * (min(max_text_length, text_length) / max_text_length)) - 1

    if speaker_id is not None:
        gpt_cond_latent, speaker_embedding = xtts_model.speaker_manager.speakers[speaker_id].values()

    # inference
    out_wavs = []
    num_of_tokens = 0
    for sentence in sentences:
        if len(sentence.strip()) == 0:
            continue
        lang = lang_detect(sentence) if language == 'Auto' else language_code
        if lang == 'vi':
            sentence = normalize_vietnamese_text(sentence)
        text_tokens = torch.IntTensor(xtts_model.tokenizer.encode(sentence, lang=lang)).unsqueeze(0).to(xtts_model.device)
        num_of_tokens += text_tokens.shape[-1]
        txts = split_sentence(sentence, max_text_length=max_text_length)
        for txt in txts:
            logger.info(f"[{lang}] {txt}")
            try:
                out = xtts_model.inference(
                    text=txt,
                    language=lang,
                    gpt_cond_latent=gpt_cond_latent,
                    speaker_embedding=speaker_embedding,
                    temperature=temperature,
                    top_p=top_p,
                    top_k=top_k,
                    repetition_penalty=repetition_penalty,
                    length_penalty=dynamic_length_penalty(len(sentence)),
                    enable_text_splitting=False,
                )
                out_wavs.append(out["wav"])
            except Exception as e:
                logger.error(f"Error processing text: {e}")
    return np.concatenate(out_wavs), num_of_tokens


def build_gradio_ui():
    """Builds and launches the Gradio UI."""
    
    default_prompt = ("Hi, I am a multilingual text-to-speech AI model.\n"
                      "Bonjour, je suis un modèle d'IA de synthèse vocale multilingue.\n"
                      "Hallo, ich bin ein mehrsprachiges Text-zu-Sprache KI-Modell.\n"
                      "Ciao, sono un modello di intelligenza artificiale di sintesi vocale multilingue.\n"
                      "Привет, я многоязычная модель искусственного интеллекта, преобразующая текст в речь.\n"
                      "Xin chào, tôi là một mô hình AI chuyển đổi văn bản thành giọng nói đa ngôn ngữ.\n")
        
    with gr.Blocks(title="Coqui XTTS Demo", theme='jimmyvu/small_and_pretty') as ui:
        gr.Markdown(
          """
          # 🐸 Coqui-XTTS Text-to-Speech Demo
          Convert text to speech with advanced voice cloning and enhancement. 
          Support 17 languages, \u2605 **Vietnamese** \u2605 newly added.
          """
        )

        with gr.Tab("Built-in Voice"):
          with gr.Row():
            with gr.Column():
                input_text = gr.Text(label="Enter Text Here", 
                                     placeholder="Write the text you want to synthesize...", 
                                     value=default_prompt,
                                     lines=5, 
                                     max_length=input_text_max_length)
                
                speaker_id = gr.Dropdown(label="Speaker", choices=[k for k in xtts_model.speaker_manager.speakers.keys()], value=default_speaker_id)
                language = gr.Dropdown(label="Target Language", choices=[k for k in language_dict.keys()], value=default_language)
                synthesize_button = gr.Button("Generate Speech")
            with gr.Column():
                audio_output = gr.Audio(label="Generated Audio")
                log_output = gr.Text(label="Log Output")


        with gr.Tab("Reference Voice"):
          with gr.Row():
            with gr.Column():
                input_text_generate = gr.Text(label="Enter Text Here", 
                                     placeholder="Write the text you want to synthesize...", 
                                     lines=5, 
                                     max_length=input_text_max_length)
                speaker_reference_audio = gr.Audio(
                    label="Speaker reference audio:",
                    type="filepath",
                    editable=False,
                    min_length=3,
                    max_length=300,
                    value=default_speaker_reference_audio
                )
                enhance_speech = gr.Checkbox(label="Enhance Reference Audio", value=False)
                language_generate = gr.Dropdown(label="Target Language", choices=[k for k in language_dict.keys()], value=default_language)
                generate_button = gr.Button("Generate Speech")
            with gr.Column():
                audio_output_generate = gr.Audio(label="Generated Audio")
                log_output_generate = gr.Text(label="Log Output")

        with gr.Tab("Clone Your Voice"):
          with gr.Row():
            with gr.Column():
                input_text_mic = gr.Text(label="Enter Text Here", 
                                     placeholder="Write the text you want to synthesize...", 
                                     lines=5, 
                                     max_length=input_text_max_length)
                mic_ref_audio = gr.Audio(label="Record Reference Audio", sources=["microphone"])
                enhance_speech_mic = gr.Checkbox(label="Enhance Reference Audio", value=True)
                language_mic = gr.Dropdown(label="Target Language", choices=[k for k in language_dict.keys()], value=default_language)
                generate_button_mic = gr.Button("Generate Speech")
            with gr.Column():
                audio_output_mic = gr.Audio(label="Generated Audio")
                log_output_mic = gr.Text(label="Log Output")


        def process_mic_and_generate(input_text_mic, mic_ref_audio, enhance_speech_mic, temperature, top_p, top_k, repetition_penalty, language_mic):
              if mic_ref_audio:
                  data = str(time.time()).encode("utf-8")
                  hash = hashlib.sha1(data).hexdigest()[:10]
                  output_path = os.path.join(temp_dir, (f"mic_{hash}.wav"))

                  torch_audio = torch.from_numpy(mic_ref_audio[1].astype(float))
                  try:
                      torchaudio.save(output_path, torch_audio.unsqueeze(0), mic_ref_audio[0])
                      return generate_speech(input_text_mic, output_path, enhance_speech_mic, temperature, top_p, top_k, repetition_penalty, language_mic)
                  except Exception as e:
                      logger.error(f"Error saving audio file: {e}")
                      return None, f"Error saving audio file: {e}"
              else:
                  return None, "Please record an audio!"

        with gr.Tab("Advanced Settings"):
            with gr.Row():
                with gr.Column():
                    temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.3, step=0.05)
                    repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=50.0, value=9.5, step=1.0)
                    
                with gr.Column():
                    top_p = gr.Slider(label="Top P", minimum=0.5, maximum=1.0, value=0.85, step=0.05)
                    top_k = gr.Slider(label="Top K", minimum=0, maximum=100, value=50, step=5)
        
        synthesize_button.click(
            synthesize_speech,
            inputs=[input_text, speaker_id, temperature, top_p, top_k, repetition_penalty, language],
            outputs=[audio_output, log_output],
        )
        
        generate_button.click(
            generate_speech,
            inputs=[input_text_generate, speaker_reference_audio, enhance_speech, temperature, top_p, top_k, repetition_penalty, language_generate],
            outputs=[audio_output_generate, log_output_generate],
        )

        generate_button_mic.click(
            process_mic_and_generate,
            inputs=[input_text_mic, mic_ref_audio, enhance_speech_mic, temperature, top_p, top_k, repetition_penalty, language_mic],
            outputs=[audio_output_mic, log_output_mic],
        )
        
    return ui

if __name__ == "__main__":
    ui = build_gradio_ui()
    ui.launch(debug=False)