jerry f commited on
Commit
e0bc8d0
·
1 Parent(s): 3509591

use cuda or cpu

Browse files
Dockerfile CHANGED
@@ -13,6 +13,9 @@ COPY requirements.txt ./
13
  COPY src/ ./src/
14
 
15
  RUN pip3 install -r requirements.txt
 
 
 
16
 
17
  EXPOSE 8501
18
 
 
13
  COPY src/ ./src/
14
 
15
  RUN pip3 install -r requirements.txt
16
+ RUN pip3 install torch==2.7.0 --index-url https://download.pytorch.org/whl/cu126
17
+ RUN pip3 install torchaudio==2.7.0 --index-url https://download.pytorch.org/whl/cu126
18
+ RUN pip3 install torchvision==0.22.0 --index-url https://download.pytorch.org/whl/cu126
19
 
20
  EXPOSE 8501
21
 
src/CallCenter.py CHANGED
@@ -22,7 +22,11 @@ pipelineDiary = Pipeline.from_pretrained(
22
  "pyannote/speaker-diarization-3.1",
23
  use_auth_token=hugging_face)
24
 
25
- pipelineDiary.to(torch.device("cuda"))
 
 
 
 
26
 
27
  def diarize_wav_file(file_name):
28
  print("DIARIZING " + file_name)
 
22
  "pyannote/speaker-diarization-3.1",
23
  use_auth_token=hugging_face)
24
 
25
+ if torch.cuda.is_available():
26
+ print("diarize_wav_file Using CUDA")
27
+ pipelineDiary.to(torch.device("cuda"))
28
+ else:
29
+ print("diarize_wav_file Using CPU")
30
 
31
  def diarize_wav_file(file_name):
32
  print("DIARIZING " + file_name)
src/transcribe_files.py CHANGED
@@ -1,10 +1,18 @@
1
  import os
2
 
3
  import whisper
 
4
  import time
5
  def transcribe_segments(speakers):
6
  print(f"Whisper models {whisper.available_models()}")
7
- model = whisper.load_model("tiny.en", device="cuda")
 
 
 
 
 
 
 
8
  #model = whisper.load_model("medium.en", device="cuda")
9
  # model = whisper.load_model("turbo", device="cuda")
10
  #model = whisper.load_model("large-v3-turbo", device="cuda")
 
1
  import os
2
 
3
  import whisper
4
+ import torch
5
  import time
6
  def transcribe_segments(speakers):
7
  print(f"Whisper models {whisper.available_models()}")
8
+ if torch.cuda.is_available():
9
+ print("transcribe_segments Using CUDA")
10
+ device = "cuda"
11
+ else:
12
+ device = "cpu"
13
+ print("transcribe_segments Using CPU")
14
+
15
+ model = whisper.load_model("tiny.en", device=device)
16
  #model = whisper.load_model("medium.en", device="cuda")
17
  # model = whisper.load_model("turbo", device="cuda")
18
  #model = whisper.load_model("large-v3-turbo", device="cuda")
src/transcript_analysis.py CHANGED
@@ -121,8 +121,8 @@ def transcript_analysis(transcript):
121
  input += speaker + "\n"
122
 
123
  start = time.time()
124
- response = use_huggingface2(input)
125
- # response = use_openai(input)
126
  #response = use_bigbird_pegasus_large_arxiv(input)
127
  stop = time.time()
128
  elapsed=stop-start
 
121
  input += speaker + "\n"
122
 
123
  start = time.time()
124
+ # response = use_huggingface2(input)
125
+ response = use_openai(input)
126
  #response = use_bigbird_pegasus_large_arxiv(input)
127
  stop = time.time()
128
  elapsed=stop-start