# rag_interface.py (with numpy instead of faiss) import streamlit as st import pickle import numpy as np import rdflib import torch import datetime import os import requests from rdflib import Graph as RDFGraph, Namespace from sentence_transformers import SentenceTransformer from dotenv import load_dotenv # === CONFIGURATION === load_dotenv() MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.3" EMBEDDING_MODEL = "intfloat/multilingual-e5-base" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" EX = Namespace("http://example.org/lang/") st.set_page_config( page_title="Vanishing Voices: Language Atlas", page_icon="🌍", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS st.markdown(""" """, unsafe_allow_html=True) @st.cache_resource(show_spinner="Loading models and indexes...") def load_all_components(): embedder = SentenceTransformer(EMBEDDING_MODEL, device=DEVICE) methods = {} for label, suffix, ttl, matrix_path in [ ("Standard", "", "grafo_ttl_no_hibrido.ttl", "embed_matrix.npy"), ("Hybrid", "_hybrid", "grafo_ttl_hibrido.ttl", "embed_matrix_hybrid.npy"), ("GraphSAGE", "_hybrid_graphsage", "grafo_ttl_hibrido_graphsage.ttl", "embed_matrix_hybrid_graphsage.npy") ]: with open(f"id_map{suffix}.pkl", "rb") as f: id_map = pickle.load(f) with open(f"grafo_embed{suffix}.pickle", "rb") as f: G = pickle.load(f) matrix = np.load(matrix_path) rdf = RDFGraph() rdf.parse(ttl, format="ttl") methods[label] = (matrix, id_map, G, rdf) return methods, embedder methods, embedder = load_all_components() # === CORE FUNCTIONS === def get_top_k(matrix, id_map, query, k): vec = embedder.encode(f"query: {query}", convert_to_tensor=True, device=DEVICE) vec = vec.cpu().numpy().astype("float32") sims = np.dot(matrix, vec) / (np.linalg.norm(matrix, axis=1) * np.linalg.norm(vec) + 1e-10) top_k_idx = np.argsort(sims)[-k:][::-1] return [id_map[i] for i in top_k_idx] def get_context(G, lang_id): node = G.nodes.get(lang_id, {}) lines = [f"**Language:** {node.get('label', lang_id)}"] if node.get("wikipedia_summary"): lines.append(f"**Wikipedia:** {node['wikipedia_summary']}") if node.get("wikidata_description"): lines.append(f"**Wikidata:** {node['wikidata_description']}") if node.get("wikidata_countries"): lines.append(f"**Countries:** {node['wikidata_countries']}") return "\n\n".join(lines) def query_rdf(rdf, lang_id): q = f""" PREFIX ex: SELECT ?property ?value WHERE {{ ex:{lang_id} ?property ?value }} """ try: return [ (str(row[0]).split("/")[-1], str(row[1])) for row in rdf.query(q) ] except Exception as e: return [("error", str(e))] def generate_response(matrix, id_map, G, rdf, user_question, k=3): ids = get_top_k(matrix, id_map, user_question, k) context = [get_context(G, i) for i in ids] rdf_facts = [] for i in ids: rdf_facts.extend([f"{p}: {v}" for p, v in query_rdf(rdf, i)]) prompt = f"""[INST] You are an expert in South American indigenous languages. Use strictly and only the information below to answer the user question in **English**. - Do not infer or assume facts that are not explicitly stated. - If the answer is unknown or insufficient, say "I cannot answer with the available data." - Limit your answer to 100 words. ### CONTEXT: {chr(10).join(context)} ### RDF RELATIONS: {chr(10).join(rdf_facts)} ### QUESTION: {user_question} Answer: [/INST]""" try: res = requests.post( f"https://api-inference.huggingface.co/models/{MODEL_ID}", headers={"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}", "Content-Type": "application/json"}, json={"inputs": prompt}, timeout=30 ) out = res.json() if isinstance(out, list) and "generated_text" in out[0]: return out[0]["generated_text"].replace(prompt.strip(), "").strip(), ids, context, rdf_facts return str(out), ids, context, rdf_facts except Exception as e: return str(e), ids, context, rdf_facts # === MAIN FUNCTION === def main(): st.markdown("""

Vanishing Voices: South America's Endangered Language Atlas

Linguistic Emergency: Over 40% of South America's indigenous languages face extinction. This tool documents these cultural treasures before they disappear forever.
""", unsafe_allow_html=True) with st.sidebar: st.image("https://glottolog.org/static/img/glottolog_lod.png", width=180) with st.container(): st.markdown('', unsafe_allow_html=True) st.markdown("""
Standard Search
Semantic retrieval based on text-only embeddings. Identifies languages using purely linguistic similarity from Wikipedia summaries and labels.
Hybrid Search
Combines semantic embeddings with structured data from knowledge graphs. Enriches language representation with contextual facts.
GraphSAGE Search
Leverages deep graph neural networks to learn relational patterns across languages. Captures complex cultural and genealogical connections.
""", unsafe_allow_html=True) with st.container(): st.markdown('', unsafe_allow_html=True) k = st.slider("Languages to analyze per query", 1, 10, 3) st.markdown("**Display Options:**") show_ids = st.checkbox("Language IDs", value=True, key="show_ids") show_ctx = st.checkbox("Cultural Context", value=True, key="show_ctx") show_rdf = st.checkbox("RDF Relations", value=True, key="show_rdf") with st.container(): st.markdown('', unsafe_allow_html=True) st.markdown(""" - Glottolog - Wikidata - Wikipedia - Ethnologue """) query = st.text_input("Ask about indigenous languages:", "Which Amazonian languages are most at risk?") if st.button("Analyze with All Methods") and query: col1, col2, col3 = st.columns(3) results = {} for col, (label, method) in zip([col1, col2, col3], methods.items()): with col: st.subheader(f"{label} Analysis") start = datetime.datetime.now() response, lang_ids, context, rdf_data = generate_response(*method, query, k) duration = (datetime.datetime.now() - start).total_seconds() st.markdown(response) st.markdown(f"⏱️ {duration:.2f}s | 🌐 {len(lang_ids)} languages") if show_ids: st.markdown("**Language Identifiers:**") st.code("\n".join(lang_ids)) if show_ctx: st.markdown("**Cultural Context:**") st.markdown("\n\n---\n\n".join(context)) if show_rdf: st.markdown("**RDF Knowledge:**") st.code("\n".join(rdf_data)) results[label] = response log = f""" [{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}] QUERY: {query} STANDARD: {results.get('Standard', '')} HYBRID: {results.get('Hybrid', '')} GRAPH-SAGE: {results.get('GraphSAGE', '')} {'='*60} """ try: with open("language_analysis_logs.txt", "a", encoding="utf-8") as f: f.write(log) except Exception as e: st.warning(f"Failed to log: {str(e)}") if __name__ == "__main__": main()