import streamlit as st
import datetime
import pickle
import numpy as np
import rdflib
import torch
import os
import requests
from rdflib import Graph as RDFGraph, Namespace
from sentence_transformers import SentenceTransformer
# === STREAMLIT UI CONFIG ===
st.set_page_config(
page_title="Atlas de Lenguas: Lenguas Indígenas Sudamericanas",
page_icon="🌍",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'About': "## Análisis con IA de lenguas indígenas en peligro\n"
"Esta aplicación integra grafos de conocimiento de Glottolog, Wikipedia y Wikidata."
}
)
# === CONFIGURATION ===
ENDPOINT_URL = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
if not HF_API_TOKEN:
st.error("⚠️ No se cargó el token HF_API_TOKEN desde los Secrets.")
else:
st.success("✅ Token cargado correctamente.")
EMBEDDING_MODEL = "intfloat/multilingual-e5-base"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
EX = Namespace("http://example.org/lang/")
# === CUSTOM CSS ===
st.markdown("""
""", unsafe_allow_html=True)
# === CORE FUNCTIONS ===
@st.cache_resource(show_spinner="Cargando modelos de IA y grafos de conocimiento...")
def load_all_components():
embedder = SentenceTransformer(EMBEDDING_MODEL, device=DEVICE)
methods = {}
label, suffix, ttl, matrix_path = ("LinkGraph", "_hybrid_graphsage", "grafo_ttl_hibrido_graphsage.ttl", "embed_matrix_hybrid_graphsage.npy")
with open(f"id_map{suffix}.pkl", "rb") as f:
id_map = pickle.load(f)
with open(f"grafo_embed{suffix}.pickle", "rb") as f:
G = pickle.load(f)
matrix = np.load(matrix_path)
rdf = RDFGraph()
rdf.parse(ttl, format="ttl")
methods[label] = (matrix, id_map, G, rdf)
return methods, embedder
def get_top_k(matrix, id_map, query, k, embedder):
vec = embedder.encode(f"query: {query}", convert_to_tensor=True, device=DEVICE)
vec = vec.cpu().numpy().astype("float32")
sims = np.dot(matrix, vec) / (np.linalg.norm(matrix, axis=1) * np.linalg.norm(vec) + 1e-10)
top_k_idx = np.argsort(sims)[-k:][::-1]
return [id_map[i] for i in top_k_idx]
def get_context(G, lang_id):
node = G.nodes.get(lang_id, {})
lines = [f"**Lengua:** {node.get('label', lang_id)}"]
if node.get("wikipedia_summary"):
lines.append(f"**Wikipedia:** {node['wikipedia_summary']}")
if node.get("wikidata_description"):
lines.append(f"**Wikidata:** {node['wikidata_description']}")
if node.get("wikidata_countries"):
lines.append(f"**Países:** {node['wikidata_countries']}")
return "\n\n".join(lines)
def query_rdf(rdf, lang_id):
q = f"""
PREFIX ex:
SELECT ?property ?value WHERE {{ ex:{lang_id} ?property ?value }}
"""
try:
return [(str(row[0]).split("/")[-1], str(row[1])) for row in rdf.query(q)]
except Exception as e:
return [("error", str(e))]
def query_llm(prompt):
try:
res = requests.post(
ENDPOINT_URL,
headers={"Authorization": f"Bearer {HF_API_TOKEN}", "Content-Type": "application/json"},
json={"inputs": prompt}, timeout=60
)
res.raise_for_status()
out = res.json()
if isinstance(out, list):
if len(out) > 0 and isinstance(out[0], dict) and "generated_text" in out[0]:
return out[0]["generated_text"].strip()
elif isinstance(out, dict) and "generated_text" in out:
return out["generated_text"].strip()
return "Sin respuesta del modelo."
except Exception as e:
return f"Error al consultar el modelo: {str(e)}"
def generate_response(matrix, id_map, G, rdf, user_question, k, embedder):
ids = get_top_k(matrix, id_map, user_question, k, embedder)
context = [get_context(G, i) for i in ids]
rdf_facts = []
for i in ids:
rdf_facts.extend([f"{p}: {v}" for p, v in query_rdf(rdf, i)])
prompt_es = (
"Eres un experto en lenguas indígenas sudamericanas.\n"
"Usa solo la información del contexto y hechos RDF siguientes.\n\n"
+ "### CONTEXTO:\n" + "\n".join(context) + "\n\n"
+ "### RELACIONES RDF:\n" + "\n".join(rdf_facts) + "\n\n"
+ f"### PREGUNTA:\n{user_question}\n\nRespuesta breve en español:"
)
prompt_en = (
"You are an expert in South American indigenous languages.\n"
"Use only the following context and RDF facts to answer.\n\n"
+ "### CONTEXT:\n" + "\n".join(context) + "\n\n"
+ "### RDF RELATIONS:\n" + "\n".join(rdf_facts) + "\n\n"
+ f"### QUESTION:\n{user_question}\n\nShort answer in English:"
)
response_es = query_llm(prompt_es)
response_en = query_llm(prompt_en)
full_response = (
f"Respuesta en español:
{response_es}
"
f"Answer in English:
{response_en}"
)
return full_response, ids, context, rdf_facts
def main():
methods, embedder = load_all_components()
st.title("Atlas de Lenguas: Lenguas Indígenas Sudamericanas")
st.markdown("Correo: jxvera@gmail.com", unsafe_allow_html=True)
query = st.text_input("Escribe tu pregunta sobre lenguas indígenas:")
k = st.slider("Número de lenguas similares a recuperar", min_value=1, max_value=10, value=3)
if st.button("Analizar"):
method = methods["LinkGraph"]
start = datetime.datetime.now()
response, lang_ids, context, rdf_data = generate_response(*method, query, k, embedder)
duration = (datetime.datetime.now() - start).total_seconds()
st.markdown(response, unsafe_allow_html=True)
st.caption(f"⏱️ {duration:.2f} segundos | 🌐 {len(lang_ids)} idiomas analizados")
with st.expander("📖 Contexto"):
for ctx in context:
st.markdown(ctx)
with st.expander("🔗 Hechos RDF"):
st.code("\n".join(rdf_data))
if __name__ == "__main__":
main()