Javier Vera commited on
Commit
9e91c10
·
verified ·
1 Parent(s): cf45911

Update rag_hf.py

Browse files
Files changed (1) hide show
  1. rag_hf.py +33 -97
rag_hf.py CHANGED
@@ -1,4 +1,4 @@
1
- # rag_interface.py (with numpy instead of faiss)
2
  import streamlit as st
3
  import pickle
4
  import numpy as np
@@ -14,7 +14,8 @@ from dotenv import load_dotenv
14
  # === CONFIGURATION ===
15
  load_dotenv()
16
 
17
- MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.3"
 
18
  EMBEDDING_MODEL = "intfloat/multilingual-e5-base"
19
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
20
  EX = Namespace("http://example.org/lang/")
@@ -42,28 +43,10 @@ st.markdown("""
42
  margin-bottom: 1.5rem;
43
  border-left: 4px solid #3498db;
44
  }
45
- .sidebar-section {
46
- margin-bottom: 2rem;
47
- }
48
  .sidebar-title {
49
- color: #2c3e50;
50
  font-size: 1.1rem;
51
  font-weight: 600;
52
- margin-bottom: 0.5rem;
53
- border-bottom: 1px solid #eee;
54
- padding-bottom: 0.5rem;
55
- }
56
- .method-card {
57
- background-color: #f8f9fa;
58
- border-radius: 8px;
59
- padding: 0.8rem;
60
- margin-bottom: 0.8rem;
61
- border-left: 3px solid #3498db;
62
- }
63
- .method-title {
64
- font-weight: 600;
65
- color: #3498db;
66
- margin-bottom: 0.3rem;
67
  }
68
  </style>
69
  """, unsafe_allow_html=True)
@@ -73,9 +56,8 @@ def load_all_components():
73
  embedder = SentenceTransformer(EMBEDDING_MODEL, device=DEVICE)
74
  methods = {}
75
  for label, suffix, ttl, matrix_path in [
76
- ("Standard", "", "grafo_ttl_no_hibrido.ttl", "embed_matrix.npy"),
77
- ("Hybrid", "_hybrid", "grafo_ttl_hibrido.ttl", "embed_matrix_hybrid.npy"),
78
- ("GraphSAGE", "_hybrid_graphsage", "grafo_ttl_hibrido_graphsage.ttl", "embed_matrix_hybrid_graphsage.npy")
79
  ]:
80
  with open(f"id_map{suffix}.pkl", "rb") as f:
81
  id_map = pickle.load(f)
@@ -114,10 +96,7 @@ def query_rdf(rdf, lang_id):
114
  SELECT ?property ?value WHERE {{ ex:{lang_id} ?property ?value }}
115
  """
116
  try:
117
- return [
118
- (str(row[0]).split("/")[-1], str(row[1]))
119
- for row in rdf.query(q)
120
- ]
121
  except Exception as e:
122
  return [("error", str(e))]
123
 
@@ -131,7 +110,7 @@ def generate_response(matrix, id_map, G, rdf, user_question, k=3):
131
  You are an expert in South American indigenous languages.
132
  Use strictly and only the information below to answer the user question in **English**.
133
  - Do not infer or assume facts that are not explicitly stated.
134
- - If the answer is unknown or insufficient, say "I cannot answer with the available data."
135
  - Limit your answer to 100 words.
136
 
137
 
@@ -148,9 +127,9 @@ Answer:
148
  [/INST]"""
149
  try:
150
  res = requests.post(
151
- f"https://api-inference.huggingface.co/models/{MODEL_ID}",
152
- headers={"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}", "Content-Type": "application/json"},
153
- json={"inputs": prompt}, timeout=30
154
  )
155
  out = res.json()
156
  if isinstance(out, list) and "generated_text" in out[0]:
@@ -164,90 +143,47 @@ def main():
164
  st.markdown("""
165
  <h1 class='header'>Vanishing Voices: South America's Endangered Language Atlas</h1>
166
  <div class='info-box'>
167
- <b>Linguistic Emergency:</b> Over 40% of South America's indigenous languages face extinction.
168
- This tool documents these cultural treasures before they disappear forever.
169
  </div>
170
  """, unsafe_allow_html=True)
171
 
172
  with st.sidebar:
173
  st.image("https://glottolog.org/static/img/glottolog_lod.png", width=180)
174
 
175
- with st.container():
176
- st.markdown('<div class="sidebar-title">About This Tool</div>', unsafe_allow_html=True)
177
- st.markdown("""
178
- <div class="method-card">
179
- <div class="method-title">Standard Search</div>
180
- Semantic retrieval based on text-only embeddings. Identifies languages using purely linguistic similarity from Wikipedia summaries and labels.
181
- </div>
182
- <div class="method-card">
183
- <div class="method-title">Hybrid Search</div>
184
- Combines semantic embeddings with structured data from knowledge graphs. Enriches language representation with contextual facts.
185
- </div>
186
- <div class="method-card">
187
- <div class="method-title">GraphSAGE Search</div>
188
- Leverages deep graph neural networks to learn relational patterns across languages. Captures complex cultural and genealogical connections.
189
- </div>
190
- """, unsafe_allow_html=True)
191
-
192
- with st.container():
193
- st.markdown('<div class="sidebar-title">Research Settings</div>', unsafe_allow_html=True)
194
- k = st.slider("Languages to analyze per query", 1, 10, 3)
195
- st.markdown("**Display Options:**")
196
- show_ids = st.checkbox("Language IDs", value=True, key="show_ids")
197
- show_ctx = st.checkbox("Cultural Context", value=True, key="show_ctx")
198
- show_rdf = st.checkbox("RDF Relations", value=True, key="show_rdf")
199
-
200
- with st.container():
201
- st.markdown('<div class="sidebar-title">Data Sources</div>', unsafe_allow_html=True)
202
- st.markdown("""
203
- - Glottolog
204
- - Wikidata
205
- - Wikipedia
206
- - Ethnologue
207
- """)
208
-
209
- query = st.text_input("Ask about indigenous languages:", "Which Amazonian languages are most at risk?")
210
-
211
- if st.button("Analyze with All Methods") and query:
212
- col1, col2, col3 = st.columns(3)
213
  results = {}
214
- for col, (label, method) in zip([col1, col2, col3], methods.items()):
215
  with col:
216
- st.subheader(f"{label} Analysis")
217
  start = datetime.datetime.now()
218
  response, lang_ids, context, rdf_data = generate_response(*method, query, k)
219
  duration = (datetime.datetime.now() - start).total_seconds()
220
  st.markdown(response)
221
  st.markdown(f"⏱️ {duration:.2f}s | 🌐 {len(lang_ids)} languages")
222
  if show_ids:
223
- st.markdown("**Language Identifiers:**")
224
  st.code("\n".join(lang_ids))
225
  if show_ctx:
226
- st.markdown("**Cultural Context:**")
227
  st.markdown("\n\n---\n\n".join(context))
228
  if show_rdf:
229
- st.markdown("**RDF Knowledge:**")
230
  st.code("\n".join(rdf_data))
231
- results[label] = response
232
-
233
- log = f"""
234
- [{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}]
235
- QUERY: {query}
236
- STANDARD:
237
- {results.get('Standard', '')}
238
-
239
- HYBRID:
240
- {results.get('Hybrid', '')}
241
-
242
- GRAPH-SAGE:
243
- {results.get('GraphSAGE', '')}
244
- {'='*60}
245
- """
246
- try:
247
- with open("language_analysis_logs.txt", "a", encoding="utf-8") as f:
248
- f.write(log)
249
- except Exception as e:
250
- st.warning(f"Failed to log: {str(e)}")
251
 
252
  if __name__ == "__main__":
253
  main()
 
1
+ # rag_interface.py (Hybrid & GraphSAGE only, simplified explanations, renamed methods)
2
  import streamlit as st
3
  import pickle
4
  import numpy as np
 
14
  # === CONFIGURATION ===
15
  load_dotenv()
16
 
17
+ ENDPOINT_URL = os.getenv("HF_ENDPOINT")
18
+ HF_API_TOKEN = os.getenv("HF_API_TOKEN")
19
  EMBEDDING_MODEL = "intfloat/multilingual-e5-base"
20
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
21
  EX = Namespace("http://example.org/lang/")
 
43
  margin-bottom: 1.5rem;
44
  border-left: 4px solid #3498db;
45
  }
 
 
 
46
  .sidebar-title {
 
47
  font-size: 1.1rem;
48
  font-weight: 600;
49
+ margin-top: 1rem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  }
51
  </style>
52
  """, unsafe_allow_html=True)
 
56
  embedder = SentenceTransformer(EMBEDDING_MODEL, device=DEVICE)
57
  methods = {}
58
  for label, suffix, ttl, matrix_path in [
59
+ ("InfoMatch", "_hybrid", "grafo_ttl_hibrido.ttl", "embed_matrix_hybrid.npy"),
60
+ ("LinkGraph", "_hybrid_graphsage", "grafo_ttl_hibrido_graphsage.ttl", "embed_matrix_hybrid_graphsage.npy")
 
61
  ]:
62
  with open(f"id_map{suffix}.pkl", "rb") as f:
63
  id_map = pickle.load(f)
 
96
  SELECT ?property ?value WHERE {{ ex:{lang_id} ?property ?value }}
97
  """
98
  try:
99
+ return [(str(row[0]).split("/")[-1], str(row[1])) for row in rdf.query(q)]
 
 
 
100
  except Exception as e:
101
  return [("error", str(e))]
102
 
 
110
  You are an expert in South American indigenous languages.
111
  Use strictly and only the information below to answer the user question in **English**.
112
  - Do not infer or assume facts that are not explicitly stated.
113
+ - If the answer is unknown or insufficient, say \"I cannot answer with the available data.\"
114
  - Limit your answer to 100 words.
115
 
116
 
 
127
  [/INST]"""
128
  try:
129
  res = requests.post(
130
+ ENDPOINT_URL,
131
+ headers={"Authorization": f"Bearer {HF_API_TOKEN}", "Content-Type": "application/json"},
132
+ json={"inputs": prompt}, timeout=60
133
  )
134
  out = res.json()
135
  if isinstance(out, list) and "generated_text" in out[0]:
 
143
  st.markdown("""
144
  <h1 class='header'>Vanishing Voices: South America's Endangered Language Atlas</h1>
145
  <div class='info-box'>
146
+ <b>Why this matters:</b> Many indigenous languages in South America are disappearing. This app helps understand and preserve them using artificial intelligence.
 
147
  </div>
148
  """, unsafe_allow_html=True)
149
 
150
  with st.sidebar:
151
  st.image("https://glottolog.org/static/img/glottolog_lod.png", width=180)
152
 
153
+ st.markdown("### What are the methods?")
154
+ st.markdown("""
155
+ - **Graph A**: Combines descriptions, country info, and speaker data using classic node2vec embeddings.
156
+ - **Graph B**: Uses graph learning (GraphSAGE) to detect patterns in how languages relate to each other.
157
+ """)
158
+
159
+ st.markdown("### Options")
160
+ k = st.slider("How many languages to analyze?", 1, 10, 3)
161
+ show_ids = st.checkbox("Show IDs", value=True)
162
+ show_ctx = st.checkbox("Show Text Info", value=True)
163
+ show_rdf = st.checkbox("Show Extra Facts", value=True)
164
+
165
+ query = st.text_input("Ask something about South American languages:", "What languages are spoken in Perú?")
166
+
167
+ if st.button("Analyze") and query:
168
+ col1, col2 = st.columns(2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
  results = {}
170
+ for col, (label, method) in zip([col1, col2], methods.items()):
171
  with col:
172
+ st.subheader(f"{label} Method")
173
  start = datetime.datetime.now()
174
  response, lang_ids, context, rdf_data = generate_response(*method, query, k)
175
  duration = (datetime.datetime.now() - start).total_seconds()
176
  st.markdown(response)
177
  st.markdown(f"⏱️ {duration:.2f}s | 🌐 {len(lang_ids)} languages")
178
  if show_ids:
179
+ st.markdown("**Language IDs:**")
180
  st.code("\n".join(lang_ids))
181
  if show_ctx:
182
+ st.markdown("**Text Info:**")
183
  st.markdown("\n\n---\n\n".join(context))
184
  if show_rdf:
185
+ st.markdown("**Extra Facts:**")
186
  st.code("\n".join(rdf_data))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187
 
188
  if __name__ == "__main__":
189
  main()