masanorihirano's picture
limit token
ecf7aeb
raw
history blame
12.5 kB
import datetime
import json
import os
import shutil
from typing import Optional
from typing import Tuple
import gradio as gr
import torch
from fastchat.serve.inference import compress_module
from fastchat.serve.inference import raise_warning_for_old_weights
from huggingface_hub import Repository
from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
from peft import LoraConfig
from peft import get_peft_model
from peft import set_peft_model_state_dict
from transformers import AutoModelForCausalLM
from transformers import GenerationConfig
from transformers import LlamaTokenizer
print(datetime.datetime.now())
NUM_THREADS = 4
print(NUM_THREADS)
print("starting server ...")
BASE_MODEL = "decapoda-research/llama-13b-hf"
LORA_WEIGHTS = "izumi-lab/llama-13b-japanese-lora-v0-1ep"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DATASET_REPOSITORY = os.environ.get("DATASET_REPOSITORY", None)
repo = None
LOCAL_DIR = "/home/user/data/"
PROMPT_LANG = "en"
assert PROMPT_LANG in ["ja", "en"]
if HF_TOKEN and DATASET_REPOSITORY:
try:
shutil.rmtree(LOCAL_DIR)
except Exception:
pass
repo = Repository(
local_dir=LOCAL_DIR,
clone_from=DATASET_REPOSITORY,
use_auth_token=HF_TOKEN,
repo_type="dataset",
)
repo.git_pull()
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except Exception:
pass
resume_from_checkpoint = snapshot_download(
repo_id=LORA_WEIGHTS, use_auth_token=HF_TOKEN
)
checkpoint_name = hf_hub_download(
repo_id=LORA_WEIGHTS, filename="adapter_model.bin", use_auth_token=HF_TOKEN
)
if device == "cuda":
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL, load_in_8bit=True, device_map="auto", torch_dtype=torch.float16
)
elif device == "mps":
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
load_in_8bit=True,
torch_dtype=torch.float16,
)
else:
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
load_in_8bit=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
)
config = LoraConfig.from_pretrained(resume_from_checkpoint)
model = get_peft_model(model, config)
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
raise_warning_for_old_weights(BASE_MODEL, model)
compress_module(model, device)
# if device == "cuda" or device == "mps":
# model = model.to(device)
def generate_prompt(instruction: str, input: Optional[str] = None):
print(f"input: {input}")
if input:
if PROMPT_LANG == "ja":
return f"ไปฅไธ‹ใฏใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใจใ•ใ‚‰ใชใ‚‹ๆ–‡่„ˆใ‚’้ฉ็”จใ™ใ‚‹ๅ…ฅๅŠ›ใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚\n\n### ๆŒ‡็คบ:\n{instruction}\n\n### ๅ…ฅๅŠ›:\n{input}\n\n### Response:\n"
elif PROMPT_LANG == "en":
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
raise ValueError("PROMPT_LANG")
else:
if PROMPT_LANG == "ja":
return f"ไปฅไธ‹ใฏใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใจใ•ใ‚‰ใชใ‚‹ๆ–‡่„ˆใ‚’้ฉ็”จใ™ใ‚‹ๅ…ฅๅŠ›ใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚\n\n### ๆŒ‡็คบ:\n{instruction}\n\n### ่ฟ”็ญ”:\n"
elif PROMPT_LANG == "en":
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
else:
raise ValueError("PROMPT_LANG")
if device != "cpu":
model.half()
model.eval()
if torch.__version__ >= "2":
model = torch.compile(model)
def save_inputs_and_outputs(now, inputs, outputs, generate_kwargs):
current_hour = now.strftime("%Y-%m-%d_%H")
file_name = f"prompts_{LORA_WEIGHTS.split('/')[-1]}_{current_hour}.jsonl"
if repo is not None:
repo.git_pull(rebase=True)
with open(os.path.join(LOCAL_DIR, file_name), "a", encoding="utf-8") as f:
json.dump(
{
"inputs": inputs,
"outputs": outputs,
"generate_kwargs": generate_kwargs,
},
f,
ensure_ascii=False,
)
f.write("\n")
repo.push_to_hub()
# we cant add typing now
# https://github.com/gradio-app/gradio/issues/3514
def evaluate(
instruction,
input=None,
temperature=0.7,
max_tokens=384,
):
num_beams: int = 1
top_p: float = 1.0
top_k: int = 0
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
if len(inputs["input_ids"][0]) > max_tokens:
return f"please reduce length. Currently, {len(inputs['input_ids'][0])} token are used.", gr.update(interactive=True), gr.update(interactive=True)
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
pad_token_id=tokenizer.pad_token_id,
eos_token=tokenizer.eos_token_id,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_tokens-len(input_ids),
)
s = generation_output.sequences[0]
output = tokenizer.decode(s, skip_special_tokens=True)
if prompt.endswith("Response:"):
output = output.split("### Response:")[1].strip()
elif prompt.endswith("่ฟ”็ญ”:"):
output = output.split("### ่ฟ”็ญ”:")[1].strip()
else:
raise ValueError(f"No valid prompt ends. {prompt}")
if HF_TOKEN and DATASET_REPOSITORY:
try:
now = datetime.datetime.now()
current_time = now.strftime("%Y-%m-%d %H:%M:%S")
print(f"[{current_time}] Pushing prompt and completion to the Hub")
save_inputs_and_outputs(
now,
prompt,
output,
{
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"num_beams": num_beams,
"max_tokens": max_tokens,
},
)
except Exception as e:
print(e)
return output, gr.update(interactive=True), gr.update(interactive=True)
def reset_textbox():
return gr.update(value=""), gr.update(value=""), gr.update(value="")
def no_interactive() -> Tuple[gr.Request, gr.Request]:
return gr.update(interactive=False), gr.update(interactive=False)
title = """<h1 align="center">LLaMA-13B Japanese LoRA</h1>"""
theme = gr.themes.Default(primary_hue="green")
description = """The official demo for **[izumi-lab/llama-13b-japanese-lora-v0-1ep](https://huggingface.co/izumi-lab/llama-13b-japanese-lora-v0-1ep)**. It is a 13B-parameter LLaMA model finetuned to follow instructions. It is trained on the [izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) dataset. For more information, please visit [the project's website](https://llm.msuzuki.me)."""
with gr.Blocks(
css="""#col_container { margin-left: auto; margin-right: auto;}""",
theme=theme,
) as demo:
gr.HTML(title)
gr.Markdown(description)
with gr.Column(elem_id="col_container", visible=False) as main_block:
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
lines=3, label="Instruction (Pre-Prompt + Instruction + Input is limitted to 256 tokens)", placeholder="ใ“ใ‚“ใซใกใฏ"
)
inputs = gr.Textbox(lines=1, label="Input", placeholder="none")
with gr.Row():
with gr.Column(scale=3):
clear_button = gr.Button("Clear").style(full_width=True)
with gr.Column(scale=5):
submit_button = gr.Button("Submit").style(full_width=True)
outputs = gr.Textbox(lines=4, label="Output")
# inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("Parameters", open=True):
temperature = gr.Slider(
minimum=0,
maximum=1.0,
value=0.7,
step=0.05,
interactive=True,
label="Temperature",
)
max_tokens = gr.Slider(
minimum=20,
maximum=384,
value=128,
step=1,
interactive=True,
label="Max length (Pre-prompt + instruction + input + output))",
)
with gr.Column(elem_id="user_consent_container") as user_consent_block:
# Get user consent
gr.Markdown(
"""
## User Consent for Data Collection, Use, and Sharing:
By using our app, you acknowledge and agree to the following terms regarding the data you provide:
- **Collection**: We may collect inputs you type into our app.
- **Use**: We may use the collected data for research purposes, to improve our services, and to develop new products or services, including commercial applications.
- **Sharing and Publication**: Your input data may be published, shared with third parties, or used for analysis and reporting purposes.
- **Data Retention**: We may retain your input data for as long as necessary.
By continuing to use our app, you provide your explicit consent to the collection, use, and potential sharing of your data as described above. If you do not agree with our data collection, use, and sharing practices, please do not use our app.
## ใƒ‡ใƒผใ‚ฟๅŽ้›†ใ€ๅˆฉ็”จใ€ๅ…ฑๆœ‰ใซ้–ขใ™ใ‚‹ใƒฆใƒผใ‚ถใƒผใฎๅŒๆ„๏ผš
ๆœฌใ‚ขใƒ—ใƒชใ‚’ไฝฟ็”จใ™ใ‚‹ใ“ใจใซใ‚ˆใ‚Šใ€ๆไพ›ใ™ใ‚‹ใƒ‡ใƒผใ‚ฟใซ้–ขใ™ใ‚‹ไปฅไธ‹ใฎๆกไปถใ‚’่ช่ญ˜ใ—ๅŒๆ„ใ™ใ‚‹ใ‚‚ใฎใจใ—ใพใ™๏ผš
- **ๅŽ้›†**: ็ง้”ใฏใ€ใ‚ขใƒ—ใƒชใซๅ…ฅๅŠ›ใ•ใ‚Œใ‚‹ใƒ†ใ‚ญใ‚นใƒˆใƒ‡ใƒผใ‚ฟใ‚’ๅŽ้›†ใ™ใ‚‹ๅ ดๅˆใŒใ‚ใ‚Šใพใ™ใ€‚
- **ๅˆฉ็”จ**: ๅŽ้›†ใ•ใ‚ŒใŸใƒ‡ใƒผใ‚ฟใฏใ€็ ”็ฉถ็›ฎ็š„ใ€ใ‚ตใƒผใƒ“ใ‚นใฎๆ”นๅ–„ใ€ๆ–ฐใ—ใ„่ฃฝๅ“ใ‚„ใ‚ตใƒผใƒ“ใ‚น๏ผˆๅ•†ๆฅญใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚’ๅซใ‚€๏ผ‰ใฎ้–‹็™บใซไฝฟ็”จใ™ใ‚‹ๅ ดๅˆใŒใ‚ใ‚Šใพใ™ใ€‚
- **ๅ…ฑๆœ‰ใŠใ‚ˆใณๅ…ฌ้–‹**: ๅ…ฅๅŠ›ใƒ‡ใƒผใ‚ฟใฏๅ…ฌ้–‹ใ•ใ‚ŒใŸใ‚Šใ€็ฌฌไธ‰่€…ใจๅ…ฑๆœ‰ใ•ใ‚ŒใŸใ‚Šใ€ๅˆ†ๆžใ‚„ๅ ฑๅ‘Šใฎ็›ฎ็š„ใงไฝฟ็”จใ•ใ‚Œใ‚‹ๅ ดๅˆใŒใ‚ใ‚Šใพใ™ใ€‚
- **ใƒ‡ใƒผใ‚ฟไฟๆŒ**: ๅ…ฅๅŠ›ใƒ‡ใƒผใ‚ฟใฏๅฟ…่ฆใชๆœŸ้–“ใซใ‚ใŸใฃใฆไฟๆŒใ™ใ‚‹ๅ ดๅˆใŒใ‚ใ‚Šใพใ™ใ€‚
ๆœฌใ‚ขใƒ—ใƒชใ‚’ๅผ•ใ็ถšใไฝฟ็”จใ™ใ‚‹ใ“ใจใซใ‚ˆใ‚Šใ€ไธŠ่จ˜ใฎใ‚ˆใ†ใซใƒ‡ใƒผใ‚ฟใฎๅŽ้›†ใ€ๅˆฉ็”จใ€ใŠใ‚ˆใณๆฝœๅœจ็š„ใชๅ…ฑๆœ‰ใซใคใ„ใฆๆ˜Ž็คบ็š„ใชๅŒๆ„ใ‚’ๆไพ›ใ—ใพใ™ใ€‚ใƒ‡ใƒผใ‚ฟใฎๅŽ้›†ใ€ๅˆฉ็”จใ€ๅ…ฑๆœ‰ใฎๆ–นๆณ•ใซๅŒๆ„ใ—ใชใ„ๅ ดๅˆใฏใ€ๆœฌใ‚ขใƒ—ใƒชใ‚’ไฝฟ็”จใ—ใชใ„ใงใใ ใ•ใ„ใ€‚
"""
)
accept_button = gr.Button("I Agree")
def enable_inputs():
return user_consent_block.update(visible=False), main_block.update(
visible=True
)
accept_button.click(
fn=enable_inputs,
inputs=[],
outputs=[user_consent_block, main_block],
queue=False,
)
inputs.submit(no_interactive, [], [submit_button, clear_button])
inputs.submit(
evaluate,
[instruction, inputs, temperature, max_tokens],
[outputs, submit_button, clear_button],
)
submit_button.click(no_interactive, [], [submit_button, clear_button])
submit_button.click(
evaluate,
[instruction, inputs, temperature, max_tokens],
[outputs, submit_button, clear_button],
)
clear_button.click(reset_textbox, [], [instruction, inputs, outputs], queue=False)
demo.queue(max_size=20, concurrency_count=NUM_THREADS, api_open=False).launch(
share=True, server_name="0.0.0.0", server_port=7860
)