|
import datetime |
|
import json |
|
import os |
|
import shutil |
|
from typing import Optional |
|
from typing import Tuple |
|
|
|
import gradio as gr |
|
import torch |
|
from huggingface_hub import Repository |
|
from peft import PeftModel |
|
from transformers import AutoModelForCausalLM |
|
from transformers import GenerationConfig |
|
from transformers import LlamaTokenizer |
|
|
|
print(datetime.datetime.now()) |
|
|
|
NUM_THREADS = 4 |
|
|
|
print(NUM_THREADS) |
|
|
|
print("starting server ...") |
|
|
|
BASE_MODEL = "decapoda-research/llama-13b-hf" |
|
LORA_WEIGHTS = "izumi-lab/llama-13b-japanese-lora-v0-1ep" |
|
DATASET_REPOSITORY = os.environ.get("DATASET_REPOSITORY", None) |
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
repo = None |
|
LOCAL_DIR = "/home/user/data/" |
|
if HF_TOKEN and DATASET_REPOSITORY: |
|
try: |
|
shutil.rmtree(LOCAL_DIR) |
|
except Exception: |
|
pass |
|
|
|
repo = Repository( |
|
local_dir=LOCAL_DIR, |
|
clone_from=DATASET_REPOSITORY, |
|
use_auth_token=HF_TOKEN, |
|
repo_type="dataset", |
|
) |
|
repo.git_pull() |
|
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL) |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
else: |
|
device = "cpu" |
|
|
|
try: |
|
if torch.backends.mps.is_available(): |
|
device = "mps" |
|
except Exception: |
|
pass |
|
|
|
if device == "cuda": |
|
model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
load_in_8bit=True, |
|
device_map="auto", |
|
) |
|
model = PeftModel.from_pretrained(model, LORA_WEIGHTS, load_in_8bit=True) |
|
elif device == "mps": |
|
model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
device_map={"": device}, |
|
load_in_8bit=True, |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
LORA_WEIGHTS, |
|
device_map={"": device}, |
|
load_in_8bit=True, |
|
) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
device_map={"": device}, |
|
low_cpu_mem_usage=True, |
|
load_in_8bit=True, |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
LORA_WEIGHTS, |
|
device_map={"": device}, |
|
load_in_8bit=True, |
|
) |
|
|
|
|
|
def generate_prompt(instruction: str, input: Optional[str] = None): |
|
if input: |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Input: |
|
{input} |
|
### Response:""" |
|
else: |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Response:""" |
|
|
|
|
|
if device != "cpu": |
|
model.half() |
|
model.eval() |
|
if torch.__version__ >= "2": |
|
model = torch.compile(model) |
|
|
|
|
|
def save_inputs_and_outputs(now, inputs, outputs, generate_kwargs): |
|
current_hour = now.strftime("%Y-%m-%d_%H") |
|
file_name = f"prompts_{current_hour}.jsonl" |
|
|
|
if repo is not None: |
|
repo.git_pull(rebase=True) |
|
with open(os.path.join(LOCAL_DIR, file_name), "a", encoding="utf-8") as f: |
|
json.dump( |
|
{ |
|
"inputs": inputs, |
|
"outputs": outputs, |
|
"generate_kwargs": generate_kwargs, |
|
}, |
|
f, |
|
ensure_ascii=False, |
|
) |
|
f.write("\n") |
|
repo.push_to_hub() |
|
|
|
|
|
|
|
|
|
def evaluate( |
|
instruction, |
|
input=None, |
|
temperature=0.7, |
|
top_p=1.0, |
|
top_k=40, |
|
num_beams=4, |
|
max_new_tokens=256, |
|
): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
output = output.split("### Response:")[1].strip() |
|
if HF_TOKEN and DATASET_REPOSITORY: |
|
try: |
|
now = datetime.datetime.now() |
|
current_time = now.strftime("%Y-%m-%d %H:%M:%S") |
|
print(f"[{current_time}] Pushing prompt and completion to the Hub") |
|
save_inputs_and_outputs( |
|
now, |
|
prompt, |
|
output, |
|
{ |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"top_k": top_k, |
|
"num_beams": num_beams, |
|
"max_new_tokens": max_new_tokens, |
|
}, |
|
) |
|
except Exception as e: |
|
print(e) |
|
return output, gr.update(interactive=True), gr.update(interactive=True) |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value=""), gr.update(value=""), gr.update(value="") |
|
|
|
|
|
def no_interactive() -> Tuple[gr.Request, gr.Request]: |
|
return gr.update(interactive=False), gr.update(interactive=False) |
|
|
|
|
|
title = """<h1 align="center">LLaMA-13B Japanese LoRA</h1>""" |
|
|
|
theme = gr.themes.Default(primary_hue="green") |
|
description = """The official demo for **[izumi-lab/llama-13b-japanese-lora-v0-1ep](https://huggingface.co/izumi-lab/llama-13b-japanese-lora-v0-1ep)**. It is a 13B-parameter LLaMA model finetuned to follow instructions. It is trained on the [izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) dataset. For more information, please visit [the project's website](https://llm.msuzuki.me).""" |
|
with gr.Blocks( |
|
css="""#col_container { margin-left: auto; margin-right: auto;}""", |
|
theme=theme, |
|
) as demo: |
|
gr.HTML(title) |
|
gr.Markdown(description) |
|
with gr.Column(elem_id="col_container", visible=False) as main_block: |
|
with gr.Row(): |
|
with gr.Column(): |
|
instruction = gr.Textbox( |
|
lines=3, label="Instruction", placeholder="ใใใซใกใฏ" |
|
) |
|
inputs = gr.Textbox(lines=1, label="Input", placeholder="none") |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
clear_button = gr.Button("Clear").style(full_width=True) |
|
with gr.Column(scale=5): |
|
submit_button = gr.Button("Submit").style(full_width=True) |
|
outputs = gr.Textbox(lines=5, label="Output") |
|
|
|
|
|
with gr.Accordion("Parameters", open=False): |
|
temperature = gr.Slider( |
|
minimum=0, |
|
maximum=1.0, |
|
value=0.7, |
|
step=0.05, |
|
interactive=True, |
|
label="Temperature", |
|
) |
|
top_p = gr.Slider( |
|
minimum=0, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.05, |
|
interactive=True, |
|
label="Top p", |
|
) |
|
top_k = gr.Slider( |
|
minimum=1, |
|
maximum=50, |
|
value=4, |
|
step=1, |
|
interactive=True, |
|
label="Top k", |
|
) |
|
num_beams = gr.Slider( |
|
minimum=1, |
|
maximum=50, |
|
value=4, |
|
step=1, |
|
interactive=True, |
|
label="Beams", |
|
) |
|
max_new_tokens = gr.Slider( |
|
minimum=1, |
|
maximum=50, |
|
value=4, |
|
step=1, |
|
interactive=True, |
|
label="Max length", |
|
) |
|
|
|
with gr.Column(elem_id="user_consent_container") as user_consent_block: |
|
|
|
gr.Markdown( |
|
""" |
|
## User Consent for Data Collection, Use, and Sharing: |
|
By using our app, you acknowledge and agree to the following terms regarding the data you provide: |
|
|
|
- **Collection**: We may collect inputs you type into our app. |
|
- **Use**: We may use the collected data for research purposes, to improve our services, and to develop new products or services, including commercial applications. |
|
- **Sharing and Publication**: Your input data may be published, shared with third parties, or used for analysis and reporting purposes. |
|
- **Data Retention**: We may retain your input data for as long as necessary. |
|
|
|
By continuing to use our app, you provide your explicit consent to the collection, use, and potential sharing of your data as described above. If you do not agree with our data collection, use, and sharing practices, please do not use our app. |
|
|
|
## ใใผใฟๅ้ใๅฉ็จใๅ
ฑๆใซ้ขใใใฆใผใถใผใฎๅๆ๏ผ |
|
ๆฌใขใใชใไฝฟ็จใใใใจใซใใใๆไพใใใใผใฟใซ้ขใใไปฅไธใฎๆกไปถใ่ช่ญใๅๆใใใใฎใจใใพใ๏ผ |
|
|
|
- **ๅ้**: ็ง้ใฏใใขใใชใซๅ
ฅๅใใใใใญในใใใผใฟใๅ้ใใๅ ดๅใใใใพใใ |
|
- **ๅฉ็จ**: ๅ้ใใใใใผใฟใฏใ็ ็ฉถ็ฎ็ใใตใผใในใฎๆนๅใๆฐใใ่ฃฝๅใใตใผใใน๏ผๅๆฅญใขใใชใฑใผใทใงใณใๅซใ๏ผใฎ้็บใซไฝฟ็จใใๅ ดๅใใใใพใใ |
|
- **ๅ
ฑๆใใใณๅ
ฌ้**: ๅ
ฅๅใใผใฟใฏๅ
ฌ้ใใใใใ็ฌฌไธ่
ใจๅ
ฑๆใใใใใๅๆใๅ ฑๅใฎ็ฎ็ใงไฝฟ็จใใใๅ ดๅใใใใพใใ |
|
- **ใใผใฟไฟๆ**: ๅ
ฅๅใใผใฟใฏๅฟ
่ฆใชๆ้ใซใใใฃใฆไฟๆใใๅ ดๅใใใใพใใ |
|
|
|
ๆฌใขใใชใๅผใ็ถใไฝฟ็จใใใใจใซใใใไธ่จใฎใใใซใใผใฟใฎๅ้ใๅฉ็จใใใใณๆฝๅจ็ใชๅ
ฑๆใซใคใใฆๆ็คบ็ใชๅๆใๆไพใใพใใใใผใฟใฎๅ้ใๅฉ็จใๅ
ฑๆใฎๆนๆณใซๅๆใใชใๅ ดๅใฏใๆฌใขใใชใไฝฟ็จใใชใใงใใ ใใใ |
|
""" |
|
) |
|
accept_button = gr.Button("I Agree") |
|
|
|
def enable_inputs(): |
|
return user_consent_block.update(visible=False), main_block.update( |
|
visible=True |
|
) |
|
|
|
accept_button.click( |
|
fn=enable_inputs, |
|
inputs=[], |
|
outputs=[user_consent_block, main_block], |
|
queue=False, |
|
) |
|
inputs.submit(no_interactive, [], [submit_button, clear_button]) |
|
inputs.submit( |
|
evaluate, |
|
[instruction, inputs, temperature, top_p, top_k, num_beams, max_new_tokens], |
|
[outputs, submit_button, clear_button], |
|
) |
|
submit_button.click(no_interactive, [], [submit_button, clear_button]) |
|
submit_button.click( |
|
evaluate, |
|
[instruction, inputs, temperature, top_p, top_k, num_beams, max_new_tokens], |
|
[outputs, submit_button, clear_button], |
|
) |
|
clear_button.click(reset_textbox, [], [instruction, inputs, outputs], queue=False) |
|
|
|
demo.queue(max_size=20, concurrency_count=NUM_THREADS, api_open=False).launch( |
|
share=False, server_name="0.0.0.0", server_port=7860 |
|
) |
|
|