File size: 13,771 Bytes
df97cfa
 
 
 
f732d7c
df97cfa
f732d7c
 
 
d91928f
 
df97cfa
d91928f
0d4eedd
d91928f
0d4eedd
d91928f
df97cfa
f732d7c
135325d
f732d7c
df97cfa
 
df7df20
b555022
df97cfa
 
 
b555022
f732d7c
 
df97cfa
dc15b84
df97cfa
 
 
dc15b84
 
 
df97cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
b555022
f732d7c
 
 
 
 
 
 
 
 
 
 
 
0d4eedd
 
 
 
 
 
f732d7c
df97cfa
d91928f
f732d7c
 
df97cfa
f732d7c
 
4f91616
d91928f
f732d7c
 
df97cfa
d91928f
f732d7c
4f91616
d91928f
 
f732d7c
0d4eedd
 
 
d91928f
 
 
 
0d4eedd
 
f732d7c
 
 
 
dc15b84
 
 
 
f732d7c
 
 
 
 
dc15b84
 
f732d7c
dc15b84
 
 
 
f732d7c
 
 
dc15b84
 
f732d7c
 
 
 
 
 
 
 
 
df97cfa
 
deb1174
df97cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f732d7c
df97cfa
 
 
ecf7aeb
160c75c
f732d7c
dc15b84
8c2bc35
 
f732d7c
 
df7df20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44af809
df7df20
 
 
 
160c75c
 
 
 
 
ecf7aeb
f732d7c
6fbdb04
f732d7c
 
 
160c75c
f732d7c
dc15b84
 
f732d7c
 
 
 
 
 
 
160c75c
f732d7c
 
dc15b84
 
 
 
 
 
 
deb1174
df97cfa
 
 
 
 
 
 
 
 
 
 
 
 
ecf7aeb
44af809
df97cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2582eb
 
 
 
 
82d194e
f2582eb
 
5b34bc3
df97cfa
 
 
 
 
 
 
 
 
f2582eb
df97cfa
 
 
 
 
 
 
dc15b84
df97cfa
 
dc15b84
df97cfa
 
 
 
 
 
6fbdb04
df97cfa
ecf7aeb
 
82d194e
ecf7aeb
df97cfa
 
7935419
df97cfa
160c75c
 
 
 
b2a0a00
160c75c
 
 
df97cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2582eb
df97cfa
f2582eb
ac7b6c5
f2582eb
ac7b6c5
df97cfa
f2582eb
df97cfa
f732d7c
df97cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160c75c
df97cfa
 
 
 
 
44af809
 
df97cfa
 
 
 
0d4eedd
df97cfa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import datetime
import json
import os
import shutil
from typing import Optional
from typing import Tuple

import gradio as gr
import torch
from fastchat.serve.inference import compress_module
from fastchat.serve.inference import raise_warning_for_old_weights
from huggingface_hub import Repository
from huggingface_hub import hf_hub_download
from huggingface_hub import snapshot_download
from peft import LoraConfig
from peft import get_peft_model
from peft import set_peft_model_state_dict
from transformers import AutoModelForCausalLM
from transformers import GenerationConfig
from transformers import LlamaTokenizer

print(datetime.datetime.now())

NUM_THREADS = 1

print(NUM_THREADS)

print("starting server ...")

BASE_MODEL = "decapoda-research/llama-13b-hf"
LORA_WEIGHTS = "izumi-lab/llama-13b-japanese-lora-v0-1ep"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DATASET_REPOSITORY = os.environ.get("DATASET_REPOSITORY", None)

repo = None
LOCAL_DIR = "/home/user/data/"
PROMPT_LANG = "en"
assert PROMPT_LANG in ["ja", "en"]

if HF_TOKEN and DATASET_REPOSITORY:
    try:
        shutil.rmtree(LOCAL_DIR)
    except Exception:
        pass

    repo = Repository(
        local_dir=LOCAL_DIR,
        clone_from=DATASET_REPOSITORY,
        use_auth_token=HF_TOKEN,
        repo_type="dataset",
    )
    repo.git_pull()

tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except Exception:
    pass

resume_from_checkpoint = snapshot_download(
    repo_id=LORA_WEIGHTS, use_auth_token=HF_TOKEN
)
checkpoint_name = hf_hub_download(
    repo_id=LORA_WEIGHTS, filename="adapter_model.bin", use_auth_token=HF_TOKEN
)
if device == "cuda":
    model = AutoModelForCausalLM.from_pretrained(
        BASE_MODEL, load_in_8bit=True, device_map="auto", torch_dtype=torch.float16
    )
elif device == "mps":
    model = AutoModelForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        load_in_8bit=True,
        torch_dtype=torch.float16,
    )
else:
    model = AutoModelForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        load_in_8bit=True,
        low_cpu_mem_usage=True,
        torch_dtype=torch.float16,
    )

config = LoraConfig.from_pretrained(resume_from_checkpoint)
model = get_peft_model(model, config)
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
raise_warning_for_old_weights(BASE_MODEL, model)
compress_module(model, device)
# if device == "cuda" or device == "mps":
#     model = model.to(device)


def generate_prompt(instruction: str, input: Optional[str] = None):
    if input:
        if PROMPT_LANG == "ja":
            return f"ไปฅไธ‹ใฏใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใจใ•ใ‚‰ใชใ‚‹ๆ–‡่„ˆใ‚’้ฉ็”จใ™ใ‚‹ๅ…ฅๅŠ›ใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚\n\n### ๆŒ‡็คบ:\n{instruction}\n\n### ๅ…ฅๅŠ›:\n{input}\n\n### Response:\n"
        elif PROMPT_LANG == "en":
            return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
        else:
            raise ValueError("PROMPT_LANG")
    else:
        if PROMPT_LANG == "ja":
            return f"ไปฅไธ‹ใฏใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใจใ•ใ‚‰ใชใ‚‹ๆ–‡่„ˆใ‚’้ฉ็”จใ™ใ‚‹ๅ…ฅๅŠ›ใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚\n\n### ๆŒ‡็คบ:\n{instruction}\n\n### ่ฟ”็ญ”:\n"
        elif PROMPT_LANG == "en":
            return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
        else:
            raise ValueError("PROMPT_LANG")


if device != "cpu":
    model.half()
model.eval()
if torch.__version__ >= "2":
    model = torch.compile(model)


def save_inputs_and_outputs(now, inputs, outputs, generate_kwargs):
    current_hour = now.strftime("%Y-%m-%d_%H")
    file_name = f"prompts_{LORA_WEIGHTS.split('/')[-1]}_{current_hour}.jsonl"

    if repo is not None:
        repo.git_pull(rebase=True)
        with open(os.path.join(LOCAL_DIR, file_name), "a", encoding="utf-8") as f:
            json.dump(
                {
                    "inputs": inputs,
                    "outputs": outputs,
                    "generate_kwargs": generate_kwargs,
                },
                f,
                ensure_ascii=False,
            )
            f.write("\n")
        repo.push_to_hub()


# we cant add typing now
# https://github.com/gradio-app/gradio/issues/3514
def evaluate(
    instruction,
    input=None,
    temperature=0.7,
    max_tokens=384,
    repetition_penalty=1.0,
):
    num_beams: int = 1
    top_p: float = 0.75
    top_k: int = 40
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    if len(inputs["input_ids"][0]) > max_tokens + 10:
        if HF_TOKEN and DATASET_REPOSITORY:
            try:
                now = datetime.datetime.now()
                current_time = now.strftime("%Y-%m-%d %H:%M:%S")
                print(f"[{current_time}] Pushing prompt and completion to the Hub")
                save_inputs_and_outputs(
                    now,
                    prompt,
                    "",
                    {
                        "temperature": temperature,
                        "top_p": top_p,
                        "top_k": top_k,
                        "num_beams": num_beams,
                        "max_tokens": max_tokens,
                        "repetition_penalty": repetition_penalty,
                    },
                )
            except Exception as e:
                print(e)
        return (
            f"please reduce the input length. Currently, {len(inputs['input_ids'][0])} tokens are used.",
            gr.update(interactive=True),
            gr.update(interactive=True),
        )
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        num_beams=num_beams,
        pad_token_id=tokenizer.pad_token_id,
        eos_token=tokenizer.eos_token_id,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_tokens - len(input_ids),
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s, skip_special_tokens=True)
    if prompt.endswith("Response:"):
        output = output.split("### Response:")[1].strip()
    elif prompt.endswith("่ฟ”็ญ”:"):
        output = output.split("### ่ฟ”็ญ”:")[1].strip()
    else:
        raise ValueError(f"No valid prompt ends. {prompt}")
    if HF_TOKEN and DATASET_REPOSITORY:
        try:
            now = datetime.datetime.now()
            current_time = now.strftime("%Y-%m-%d %H:%M:%S")
            print(f"[{current_time}] Pushing prompt and completion to the Hub")
            save_inputs_and_outputs(
                now,
                prompt,
                output,
                {
                    "temperature": temperature,
                    "top_p": top_p,
                    "top_k": top_k,
                    "num_beams": num_beams,
                    "max_tokens": max_tokens,
                    "repetition_penalty": repetition_penalty,
                },
            )
        except Exception as e:
            print(e)
    return output, gr.update(interactive=True), gr.update(interactive=True)


def reset_textbox():
    return gr.update(value=""), gr.update(value=""), gr.update(value="")


def no_interactive() -> Tuple[gr.Request, gr.Request]:
    return gr.update(interactive=False), gr.update(interactive=False)


title = """<h1 align="center">LLaMA-13B Japanese LoRA</h1>"""

theme = gr.themes.Default(primary_hue="green")
description = (
    "The official demo for **[izumi-lab/llama-13b-japanese-lora-v0-1ep](https://huggingface.co/izumi-lab/llama-13b-japanese-lora-v0-1ep)**.  "
    "It is a 13B-parameter LLaMA model finetuned to follow instructions.  "
    "It is trained on the [izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) dataset.  "
    "For more information, please visit [the project's website](https://llm.msuzuki.me).  "
    "This model can output up to 256 tokens, but the maximum number of tokens is 225 due to the GPU memory limit of HuggingFace Space.  "
    "It takes about **1 minute** to output. When access is concentrated, the operation may become slow."
)
with gr.Blocks(
    css="""#col_container { margin-left: auto; margin-right: auto;}""",
    theme=theme,
) as demo:
    gr.HTML(title)
    gr.Markdown(description)
    with gr.Column(elem_id="col_container", visible=False) as main_block:
        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(
                    lines=2, label="Instruction", placeholder="ใ“ใ‚“ใซใกใฏ"
                )
                inputs = gr.Textbox(lines=1, label="Input", placeholder="none")
                with gr.Row():
                    with gr.Column(scale=3):
                        clear_button = gr.Button("Clear").style(full_width=True)
                    with gr.Column(scale=5):
                        submit_button = gr.Button("Submit").style(full_width=True)
            outputs = gr.Textbox(lines=4, label="Output")

        # inputs, top_p, temperature, top_k, repetition_penalty
        with gr.Accordion("Parameters", open=True):
            temperature = gr.Slider(
                minimum=0,
                maximum=1.0,
                value=0.7,
                step=0.05,
                interactive=True,
                label="Temperature",
            )
            max_tokens = gr.Slider(
                minimum=20,
                maximum=225,
                value=128,
                step=1,
                interactive=True,
                label="Max length (Pre-prompt + instruction + input + output)",
            )
            repetition_penalty = gr.Slider(
                minimum=1.0,
                maximum=5.0,
                value=1.2,
                step=0.1,
                interactive=True,
                label="Repetition penalty",
            )

    with gr.Column(elem_id="user_consent_container") as user_consent_block:
        # Get user consent
        gr.Markdown(
            """
            ## User Consent for Data Collection, Use, and Sharing:
            By using our app, you acknowledge and agree to the following terms regarding the data you provide:

            - **Collection**: We may collect inputs you type into our app.
            - **Use**: We may use the collected data for research purposes, to improve our services, and to develop new products or services, including commercial applications.
            - **Sharing and Publication**: Your input data may be published, shared with third parties, or used for analysis and reporting purposes.
            - **Data Retention**: We may retain your input data for as long as necessary.

            By continuing to use our app, you provide your explicit consent to the collection, use, and potential sharing of your data as described above. If you do not agree with our data collection, use, and sharing practices, please do not use our app.

            ## ใƒ‡ใƒผใ‚ฟๅŽ้›†ใ€ๅˆฉ็”จใ€ๅ…ฑๆœ‰ใซ้–ขใ™ใ‚‹ใƒฆใƒผใ‚ถใƒผใฎๅŒๆ„๏ผš
            ๆœฌใ‚ขใƒ—ใƒชใ‚’ไฝฟ็”จใ™ใ‚‹ใ“ใจใซใ‚ˆใ‚Šใ€ๆไพ›ใ™ใ‚‹ใƒ‡ใƒผใ‚ฟใซ้–ขใ™ใ‚‹ไปฅไธ‹ใฎๆกไปถใซๅŒๆ„ใ™ใ‚‹ใ‚‚ใฎใจใ—ใพใ™๏ผš

            - **ๅŽ้›†**: ๆœฌใ‚ขใƒ—ใƒชใซๅ…ฅๅŠ›ใ•ใ‚Œใ‚‹ใƒ†ใ‚ญใ‚นใƒˆใƒ‡ใƒผใ‚ฟใฏๅŽ้›†ใ•ใ‚Œใ‚‹ๅ ดๅˆใŒใ‚ใ‚Šใพใ™ใ€‚
            - **ๅˆฉ็”จ**: ๅŽ้›†ใ•ใ‚ŒใŸใƒ‡ใƒผใ‚ฟใฏ็ ”็ฉถใ‚„ใ€ๅ•†็”จใ‚ขใƒ—ใƒชใ‚ฑใƒผใ‚ทใƒงใƒณใ‚’ๅซใ‚€ใ‚ตใƒผใƒ“ใ‚นใฎ้–‹็™บใซไฝฟ็”จใ•ใ‚Œใ‚‹ๅ ดๅˆใŒใ‚ใ‚Šใพใ™ใ€‚
            - **ๅ…ฑๆœ‰ใŠใ‚ˆใณๅ…ฌ้–‹**: ๅ…ฅๅŠ›ใƒ‡ใƒผใ‚ฟใฏ็ฌฌไธ‰่€…ใจๅ…ฑๆœ‰ใ•ใ‚ŒใŸใ‚Šใ€ๅˆ†ๆžใ‚„ๅ…ฌ้–‹ใฎ็›ฎ็š„ใงไฝฟ็”จใ•ใ‚Œใ‚‹ๅ ดๅˆใŒใ‚ใ‚Šใพใ™ใ€‚
            - **ใƒ‡ใƒผใ‚ฟไฟๆŒ**: ๅ…ฅๅŠ›ใƒ‡ใƒผใ‚ฟใฏๅฟ…่ฆใช้™ใ‚ŠไฟๆŒใ•ใ‚Œใพใ™ใ€‚

            ๆœฌใ‚ขใƒ—ใƒชใ‚’ๅผ•ใ็ถšใไฝฟ็”จใ™ใ‚‹ใ“ใจใซใ‚ˆใ‚Šใ€ไธŠ่จ˜ใฎใ‚ˆใ†ใซใƒ‡ใƒผใ‚ฟใฎๅŽ้›†ใƒปๅˆฉ็”จใƒปๅ…ฑๆœ‰ใซใคใ„ใฆๅŒๆ„ใ—ใพใ™ใ€‚ใƒ‡ใƒผใ‚ฟใฎๅˆฉ็”จๆ–นๆณ•ใซๅŒๆ„ใ—ใชใ„ๅ ดๅˆใฏใ€ๆœฌใ‚ขใƒ—ใƒชใ‚’ไฝฟ็”จใ—ใชใ„ใงใใ ใ•ใ„ใ€‚
            """
        )
        accept_button = gr.Button("I Agree")

        def enable_inputs():
            return user_consent_block.update(visible=False), main_block.update(
                visible=True
            )

    accept_button.click(
        fn=enable_inputs,
        inputs=[],
        outputs=[user_consent_block, main_block],
        queue=False,
    )
    inputs.submit(no_interactive, [], [submit_button, clear_button])
    inputs.submit(
        evaluate,
        [instruction, inputs, temperature, max_tokens, repetition_penalty],
        [outputs, submit_button, clear_button],
    )
    submit_button.click(no_interactive, [], [submit_button, clear_button])
    submit_button.click(
        evaluate,
        [instruction, inputs, temperature, max_tokens, repetition_penalty],
        [outputs, submit_button, clear_button],
    )
    clear_button.click(reset_textbox, [], [instruction, inputs, outputs], queue=False)

    demo.queue(max_size=20, concurrency_count=NUM_THREADS, api_open=False).launch(
        share=True, server_name="0.0.0.0", server_port=7860
    )