# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from transformers.utils import is_peft_available from trl.import_utils import is_diffusers_available from .testing_utils import require_diffusers if is_diffusers_available() and is_peft_available(): from trl import DDPOConfig, DDPOTrainer, DefaultDDPOStableDiffusionPipeline def scorer_function(images, prompts, metadata): return torch.randn(1) * 3.0, {} def prompt_function(): return ("cabbages", {}) @require_diffusers class DDPOTrainerTester(unittest.TestCase): """ Test the DDPOTrainer class. """ def setUp(self): self.training_args = DDPOConfig( num_epochs=2, train_gradient_accumulation_steps=1, per_prompt_stat_tracking_buffer_size=32, sample_num_batches_per_epoch=2, sample_batch_size=2, mixed_precision=None, save_freq=1000000, ) pretrained_model = "hf-internal-testing/tiny-stable-diffusion-torch" pretrained_revision = "main" pipeline = DefaultDDPOStableDiffusionPipeline( pretrained_model, pretrained_model_revision=pretrained_revision, use_lora=False ) self.trainer = DDPOTrainer(self.training_args, scorer_function, prompt_function, pipeline) return super().setUp() def tearDown(self) -> None: gc.collect() def test_loss(self): advantage = torch.tensor([-1.0]) clip_range = 0.0001 ratio = torch.tensor([1.0]) loss = self.trainer.loss(advantage, clip_range, ratio) self.assertEqual(loss.item(), 1.0) def test_generate_samples(self): samples, output_pairs = self.trainer._generate_samples(1, 2) self.assertEqual(len(samples), 1) self.assertEqual(len(output_pairs), 1) self.assertEqual(len(output_pairs[0][0]), 2) def test_calculate_loss(self): samples, _ = self.trainer._generate_samples(1, 2) sample = samples[0] latents = sample["latents"][0, 0].unsqueeze(0) next_latents = sample["next_latents"][0, 0].unsqueeze(0) log_probs = sample["log_probs"][0, 0].unsqueeze(0) timesteps = sample["timesteps"][0, 0].unsqueeze(0) prompt_embeds = sample["prompt_embeds"] advantage = torch.tensor([1.0], device=prompt_embeds.device) self.assertTupleEqual(latents.shape, (1, 4, 64, 64)) self.assertTupleEqual(next_latents.shape, (1, 4, 64, 64)) self.assertTupleEqual(log_probs.shape, (1,)) self.assertTupleEqual(timesteps.shape, (1,)) self.assertTupleEqual(prompt_embeds.shape, (2, 77, 32)) loss, approx_kl, clipfrac = self.trainer.calculate_loss( latents, timesteps, next_latents, log_probs, advantage, prompt_embeds ) self.assertTrue(torch.isfinite(loss.cpu())) @require_diffusers class DDPOTrainerWithLoRATester(DDPOTrainerTester): """ Test the DDPOTrainer class. """ def setUp(self): self.training_args = DDPOConfig( num_epochs=2, train_gradient_accumulation_steps=1, per_prompt_stat_tracking_buffer_size=32, sample_num_batches_per_epoch=2, sample_batch_size=2, mixed_precision=None, save_freq=1000000, ) pretrained_model = "hf-internal-testing/tiny-stable-diffusion-torch" pretrained_revision = "main" pipeline = DefaultDDPOStableDiffusionPipeline( pretrained_model, pretrained_model_revision=pretrained_revision, use_lora=True ) self.trainer = DDPOTrainer(self.training_args, scorer_function, prompt_function, pipeline) return super().setUp()