import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, color="#00FF00", fps=0):
# Load the video using moviepy
video = mp.VideoFileClip(vid)
# Load original fps if fps value is equal to 0
if fps == 0:
fps = video.fps
# Extract audio from the video
audio = video.audio
# Process video in chunks of 1 second
chunk_duration = 1 # seconds
total_duration = video.duration
start_time = 0
progress = f'
'
processed_frames = []
yield gr.update(visible=True), gr.update(visible=False), progress
while start_time < total_duration:
end_time = min(start_time + chunk_duration, total_duration)
chunk = video.subclip(start_time, end_time)
chunk_frames = chunk.iter_frames(fps=fps)
for frame in chunk_frames:
pil_image = Image.fromarray(frame)
if bg_type == "Color":
processed_image = process(pil_image, color)
else:
processed_image = process(pil_image, bg_image)
processed_frames.append(np.array(processed_image))
yield processed_image, None, progress
# Save processed frames for the current chunk
temp_dir = "temp"
os.makedirs(temp_dir, exist_ok=True)
for i, frame in enumerate(processed_frames):
Image.fromarray(frame).save(os.path.join(temp_dir, f"frame_{start_time}_{i}.png"))
# Clear processed frames for the current chunk
processed_frames = []
progress = f''
yield None, None, progress
start_time += chunk_duration
# Load all saved frames
all_frames = []
for filename in sorted(os.listdir(temp_dir)):
if filename.startswith("frame_") and filename.endswith(".png"):
frame = np.array(Image.open(os.path.join(temp_dir, filename)))
all_frames.append(frame)
# Create a new video from the processed frames
processed_video = mp.ImageSequenceClip(all_frames, fps=fps)
# Add the original audio back to the processed video
processed_video = processed_video.set_audio(audio)
# Save the processed video to a temporary file
temp_filepath = os.path.join(temp_dir, "processed_video.mp4")
processed_video.write_videofile(temp_filepath, codec="libx264")
# Clean up temporary files
for filename in os.listdir(temp_dir):
os.remove(os.path.join(temp_dir, filename))
yield gr.update(visible=False), gr.update(visible=True), progress
# Return the path to the temporary file
yield processed_image, temp_filepath, progress
def process(image, bg):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
if bg.startswith("#"):
color_rgb = tuple(int(bg[i : i + 2], 16) for i in (1, 3, 5))
background = Image.new("RGBA", image_size, color_rgb + (255,))
else:
background = Image.open(bg).convert("RGBA").resize(image_size)
# Composite the image onto the background using the mask
image = Image.composite(image, background, mask)
return image
css="""
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
"""
with gr.Blocks(css=css, theme="ocean") as demo:
with gr.Row():
in_video = gr.Video(label="Input Video")
stream_image = gr.Image(label="Streaming Output", visible=False)
out_video = gr.Video(label="Final Output Video")
submit_button = gr.Button("Change Background")
with gr.Row():
fps_slider = gr.Slider(
minimum=0,
maximum=60,
step=1,
value=0,
label="Output FPS (0 will inherit the original fps value)",
)
bg_type = gr.Radio(["Color", "Image"], label="Background Type", value="Color")
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True)
bg_image = gr.Image(label="Background Image", type="filepath", visible=False)
def update_visibility(bg_type):
if bg_type == "Color":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image])
progress_bar = gr.Markdown(elem_id="progress")
examples = gr.Examples(
[["rickroll-2sec.mp4", "Image", "images.webp"], ["rickroll-2sec.mp4", "Color", None]],
inputs=[in_video, bg_type, bg_image],
outputs=[stream_image, out_video, progress_bar],
fn=fn,
cache_examples=True,
cache_mode="eager",
)
submit_button.click(
fn,
inputs=[in_video, bg_type, bg_image, color_picker, fps_slider],
outputs=[stream_image, out_video, progress_bar],
)
if __name__ == "__main__":
demo.launch(show_error=True)