Update app.py
Browse files
app.py
CHANGED
@@ -48,7 +48,7 @@ if "last_prompt_hash" not in st.session_state:
|
|
48 |
st.session_state.last_prompt_hash = None
|
49 |
|
50 |
|
51 |
-
st.title("📄 Legal Document Summarizer (
|
52 |
|
53 |
USER_AVATAR = "👤"
|
54 |
BOT_AVATAR = "🤖"
|
@@ -187,6 +187,53 @@ def load_led():
|
|
187 |
tokenizer_led, model_led = load_led()
|
188 |
|
189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
def legalbert_extractive_summary(text, top_ratio=0.2):
|
191 |
sentences = sent_tokenize(text)
|
192 |
top_k = max(3, int(len(sentences) * top_ratio))
|
@@ -282,6 +329,18 @@ def hybrid_summary_hierarchical(text, top_ratio=0.8):
|
|
282 |
return structured_summary
|
283 |
|
284 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
def chunk_text_custom(text, n=1000, overlap=200):
|
286 |
chunks = []
|
287 |
for i in range(0, len(text), n - overlap):
|
@@ -298,151 +357,118 @@ def get_embedding(text, model="BAAI/bge-en-icl"):
|
|
298 |
resp = client.embeddings.create(model=model, input=text)
|
299 |
return np.array(resp.data[0].embedding)
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
def semantic_search(query, text_chunks, chunk_embeddings, k=5):
|
304 |
"""
|
305 |
-
|
306 |
-
|
307 |
"""
|
308 |
-
|
309 |
-
# simple cosine:
|
310 |
-
def cosine(a, b): return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)))
|
311 |
-
scores = [cosine(q_emb, emb) for emb in chunk_embeddings]
|
312 |
-
top_idxs = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:k]
|
313 |
-
return [text_chunks[i] for i in top_idxs]
|
314 |
|
315 |
|
316 |
-
def generate_response(system_prompt, user_message, model="meta-llama/Llama-3.2-3B-Instruct"):
|
317 |
-
return client.chat.completions.create(
|
318 |
-
model=model,
|
319 |
-
temperature=0,
|
320 |
-
messages=[{"role": "system", "content": system_prompt}, {"role": "user", "content": user_message}]
|
321 |
-
).choices[0].message.content
|
322 |
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
329 |
)
|
330 |
-
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
-
{text_chunk}
|
335 |
|
336 |
-
|
337 |
"""
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
# 3) VECTOR STORE
|
363 |
-
class SimpleVectorStore:
|
364 |
-
def __init__(self):
|
365 |
-
self.items = [] # each item is dict {text, embedding, metadata}
|
366 |
-
def add_item(self, text, embedding, metadata):
|
367 |
-
self.items.append(dict(text=text, embedding=embedding, metadata=metadata))
|
368 |
-
def search(self, query, k=5):
|
369 |
-
q_emb = create_embeddings(query)
|
370 |
-
scores = [(i, cosine_similarity(q_emb, item["embedding"]))
|
371 |
-
for i,item in enumerate(self.items)]
|
372 |
-
scores.sort(key=lambda x:x[1], reverse=True)
|
373 |
-
return [self.items[i] for i,_ in scores[:k]]
|
374 |
-
|
375 |
-
# 4) DOCUMENT PROCESSOR
|
376 |
-
def process_document(raw_text,
|
377 |
-
chunk_size=1000,
|
378 |
-
chunk_overlap=200,
|
379 |
-
questions_per_chunk=5):
|
380 |
-
# chunk the text
|
381 |
-
chunks = []
|
382 |
-
for i in range(0, len(raw_text), chunk_size - chunk_overlap):
|
383 |
-
chunks.append(raw_text[i:i+chunk_size])
|
384 |
-
store = SimpleVectorStore()
|
385 |
-
for idx,chunk in enumerate(chunks):
|
386 |
-
# chunk embedding
|
387 |
-
emb = create_embeddings(chunk)
|
388 |
-
store.add_item(chunk, emb, {"type":"chunk","index":idx})
|
389 |
-
# generate Qs + their embeddings
|
390 |
-
qs = generate_questions(chunk, num_questions=questions_per_chunk)
|
391 |
-
for q in qs:
|
392 |
-
q_emb = create_embeddings(q)
|
393 |
-
store.add_item(q, q_emb, {
|
394 |
-
"type":"question",
|
395 |
-
"chunk_index":idx,
|
396 |
-
"original_chunk": chunk
|
397 |
-
})
|
398 |
-
return chunks, store
|
399 |
-
|
400 |
-
# 5) CONTEXT BUILDER
|
401 |
-
def prepare_context(results):
|
402 |
seen = set()
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
seen.add(m["index"])
|
409 |
-
ctx.append(f"Chunk {m['index']}:\n{r['text']}")
|
410 |
-
# then referenced by questions
|
411 |
-
for r in results:
|
412 |
-
m = r["metadata"]
|
413 |
-
if m["type"]=="question":
|
414 |
-
ci = m["chunk_index"]
|
415 |
-
if ci not in seen:
|
416 |
-
seen.add(ci)
|
417 |
-
ctx.append(f"Chunk {ci} (via Q “{r['text']}”):\n{m['original_chunk']}")
|
418 |
-
return "\n\n".join(ctx)
|
419 |
-
|
420 |
-
# 6) ANSWER GENERATOR (overrides your old generate_response)
|
421 |
-
def generate_response_from_context(query, context,
|
422 |
-
model="meta-llama/Llama-3.2-3B-Instruct"):
|
423 |
-
sp = (
|
424 |
-
"You are an AI assistant that strictly answers based on the given context. "
|
425 |
-
"If the answer cannot be derived directly from the provided context, "
|
426 |
-
"respond with: 'I do not have enough information to answer that.'"
|
427 |
-
)
|
428 |
-
up = f"""
|
429 |
-
Context:
|
430 |
-
{context}
|
431 |
|
432 |
-
|
433 |
|
434 |
-
|
435 |
"""
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
)
|
442 |
-
return resp.choices[0].message.content
|
443 |
-
|
444 |
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
|
|
|
|
|
446 |
|
447 |
#######################################################################################################################
|
448 |
|
@@ -522,6 +548,13 @@ def prepare_text_for_embedding(summary_dict):
|
|
522 |
return "\n\n".join(combined_chunks)
|
523 |
|
524 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
525 |
##############################################################################################################
|
526 |
|
527 |
user_role = st.sidebar.selectbox(
|
@@ -550,6 +583,8 @@ def role_based_filter(section, summary, role):
|
|
550 |
|
551 |
|
552 |
|
|
|
|
|
553 |
#########################################################################################################################
|
554 |
|
555 |
|
@@ -558,110 +593,75 @@ if uploaded_file:
|
|
558 |
if file_hash != st.session_state.last_uploaded_hash or reprocess_btn:
|
559 |
st.session_state.processed = False
|
560 |
|
|
|
|
|
|
|
561 |
if not st.session_state.processed:
|
562 |
start_time = time.time()
|
563 |
-
|
564 |
-
# 1) extract & summarize as before
|
565 |
-
raw_text = extract_text(uploaded_file)
|
566 |
summary_dict = hybrid_summary_hierarchical(raw_text)
|
|
|
567 |
embedding_text = prepare_text_for_embedding(summary_dict)
|
568 |
|
569 |
-
#
|
570 |
-
chunks, store = process_document(raw_text,
|
571 |
-
chunk_size=1000,
|
572 |
-
chunk_overlap=200,
|
573 |
-
questions_per_chunk=5)
|
574 |
-
st.session_state.vector_store = store
|
575 |
-
# ────────────────────────────────────────────
|
576 |
|
577 |
-
# 2) generate your “role‐specific prompt” as before
|
578 |
st.session_state.document_context = embedding_text
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
"Summarize the legal document focusing on the most relevant aspects "
|
583 |
-
"such as facts, arguments, and judgments. Include key legal reasoning "
|
584 |
-
"and a timeline of events where necessary."
|
585 |
-
)
|
586 |
-
else:
|
587 |
-
role_specific_prompt = (
|
588 |
-
f"As a {user_role}, summarize the legal document focusing on "
|
589 |
-
"the most relevant aspects such as facts, arguments, and judgments "
|
590 |
-
"tailored for your role. Include key legal reasoning and timeline of events."
|
591 |
-
)
|
592 |
|
593 |
-
# ─── REPLACE rag_query_response with doc‐augmentation RAG ───
|
594 |
-
results = store.search(role_specific_prompt, k=5)
|
595 |
-
context = prepare_context(results)
|
596 |
-
rag_summary = generate_response_from_context(role_specific_prompt, context)
|
597 |
-
#
|
598 |
|
599 |
-
st.session_state.messages.append({
|
600 |
-
|
601 |
-
|
602 |
-
})
|
603 |
-
st.session_state.messages.append({
|
604 |
-
"role": "assistant",
|
605 |
-
"content": rag_summary
|
606 |
-
})
|
607 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
608 |
display_with_typing_effect(rag_summary)
|
609 |
|
610 |
processing_time = round((time.time() - start_time) / 60, 2)
|
611 |
st.info(f"⏱️ Response generated in **{processing_time} minutes**.")
|
612 |
|
613 |
-
|
|
|
614 |
st.session_state.last_uploaded_hash = file_hash
|
615 |
st.session_state.processed = True
|
616 |
st.session_state.last_prompt_hash = None
|
617 |
save_chat_history(st.session_state.messages)
|
618 |
|
619 |
|
620 |
-
|
621 |
if prompt:
|
622 |
words = prompt.split()
|
623 |
-
word_count
|
624 |
-
prompt_hash
|
625 |
|
626 |
-
# 1) LONG prompts – echo
|
627 |
if word_count > 30 and prompt_hash != st.session_state.last_prompt_hash:
|
|
|
628 |
st.session_state.last_prompt_hash = prompt_hash
|
629 |
|
|
|
630 |
raw_text = prompt
|
|
|
631 |
st.session_state.messages.append({
|
632 |
"role": "user",
|
633 |
-
"content": f"📥 **Pasted Document Text:**\n\n{limit_text(raw_text,500)}"
|
634 |
})
|
635 |
with st.chat_message("user", avatar=USER_AVATAR):
|
636 |
-
st.markdown(limit_text(raw_text,500))
|
637 |
|
638 |
start_time = time.time()
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
st.session_state.document_context = emb_text
|
643 |
st.session_state.processed = True
|
644 |
|
645 |
-
|
646 |
-
|
647 |
-
|
|
|
|
|
648 |
|
649 |
-
|
650 |
-
role_prompt = (
|
651 |
-
"Summarize the document focusing on facts, arguments, judgments, "
|
652 |
-
"and include a timeline of events."
|
653 |
-
)
|
654 |
-
else:
|
655 |
-
role_prompt = (
|
656 |
-
f"As a {user_role}, summarize the document focusing on facts, "
|
657 |
-
"arguments, judgments, plus timeline of events."
|
658 |
-
)
|
659 |
-
|
660 |
-
# ─── doc‐augmentation RAG here too ───
|
661 |
-
results = store.search(role_prompt, k=5)
|
662 |
-
context = prepare_context(results)
|
663 |
-
initial_summary = generate_response_from_context(role_prompt, context)
|
664 |
-
|
665 |
st.session_state.messages.append({
|
666 |
"role": "assistant",
|
667 |
"content": initial_summary
|
@@ -672,38 +672,25 @@ if prompt:
|
|
672 |
st.info(f"⏱️ Summary generated in {round((time.time()-start_time)/60,2)} minutes")
|
673 |
save_chat_history(st.session_state.messages)
|
674 |
|
675 |
-
|
676 |
-
# 2) SHORT prompts – normal RAG against last ingested context
|
677 |
elif word_count <= 30 and st.session_state.processed:
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
st.session_state.messages.append({"role": "
|
684 |
-
store = st.session_state.vector_store
|
685 |
-
|
686 |
-
# ─── instead of rag_query_response, do doc‐augmentation RAG ───
|
687 |
-
results = store.search(prompt, k=5)
|
688 |
-
context = prepare_context(results)
|
689 |
-
answer = generate_response_from_context(prompt, context)
|
690 |
-
|
691 |
-
# st.session_state.messages.append({"role":"user", "content":prompt})
|
692 |
-
st.session_state.messages.append({"role":"assistant","content":answer})
|
693 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
694 |
display_with_typing_effect(answer)
|
695 |
save_chat_history(st.session_state.messages)
|
696 |
|
697 |
-
|
698 |
-
# 3) not enough input
|
699 |
else:
|
700 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
701 |
st.markdown("❗ Paste at least 30 words of your document to ingest it first.")
|
702 |
|
703 |
|
704 |
################################Evaluation###########################
|
705 |
-
######################################################################################################################
|
706 |
-
|
707 |
# 📚 Imports
|
708 |
import evaluate
|
709 |
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
@@ -759,8 +746,6 @@ if ground_truth_summary_file:
|
|
759 |
else:
|
760 |
st.warning("⚠️ Please generate a summary first by uploading a document.")
|
761 |
|
762 |
-
|
763 |
-
|
764 |
######################################################################################################################
|
765 |
|
766 |
|
|
|
48 |
st.session_state.last_prompt_hash = None
|
49 |
|
50 |
|
51 |
+
st.title("📄 Legal Document Summarizer (Alt Model w/o token doc Aug)")
|
52 |
|
53 |
USER_AVATAR = "👤"
|
54 |
BOT_AVATAR = "🤖"
|
|
|
187 |
tokenizer_led, model_led = load_led()
|
188 |
|
189 |
|
190 |
+
from transformers import pipeline
|
191 |
+
|
192 |
+
@st.cache_resource
|
193 |
+
def load_led_summarizer():
|
194 |
+
# Use “allenai/led-base-16384” (or “led-large-16384”)
|
195 |
+
return pipeline(
|
196 |
+
"summarization",
|
197 |
+
model="allenai/led-base-16384",
|
198 |
+
tokenizer="allenai/led-base-16384",
|
199 |
+
device=0 if torch.cuda.is_available() else -1
|
200 |
+
)
|
201 |
+
|
202 |
+
led_summarizer = load_led_summarizer()
|
203 |
+
|
204 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
205 |
+
|
206 |
+
@st.cache_resource
|
207 |
+
def load_paraphraser():
|
208 |
+
|
209 |
+
tok = AutoTokenizer.from_pretrained("google/flan-t5-small")
|
210 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
|
211 |
+
return pipeline(
|
212 |
+
"text2text-generation",
|
213 |
+
model=model,
|
214 |
+
tokenizer=tok,
|
215 |
+
device=0 if torch.cuda.is_available() else -1,
|
216 |
+
max_length=256,
|
217 |
+
num_beams=4,
|
218 |
+
do_sample=False
|
219 |
+
)
|
220 |
+
|
221 |
+
|
222 |
+
paraphraser = load_paraphraser()
|
223 |
+
|
224 |
+
|
225 |
+
def humanize(text):
|
226 |
+
out = paraphraser(f"paraphrase: {text}",
|
227 |
+
max_length=256,
|
228 |
+
num_beams=4,
|
229 |
+
do_sample=False)[0]["generated_text"]
|
230 |
+
return out
|
231 |
+
|
232 |
+
# then at the end of rag_query_response:
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
def legalbert_extractive_summary(text, top_ratio=0.2):
|
238 |
sentences = sent_tokenize(text)
|
239 |
top_k = max(3, int(len(sentences) * top_ratio))
|
|
|
329 |
return structured_summary
|
330 |
|
331 |
|
332 |
+
from sentence_transformers import SentenceTransformer
|
333 |
+
|
334 |
+
@st.cache_resource
|
335 |
+
def load_embedder():
|
336 |
+
return SentenceTransformer("all-MiniLM-L6-v2")
|
337 |
+
|
338 |
+
embedder = load_embedder()
|
339 |
+
|
340 |
+
import numpy as np
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
def chunk_text_custom(text, n=1000, overlap=200):
|
345 |
chunks = []
|
346 |
for i in range(0, len(text), n - overlap):
|
|
|
357 |
resp = client.embeddings.create(model=model, input=text)
|
358 |
return np.array(resp.data[0].embedding)
|
359 |
|
360 |
+
def create_embeddings(text_chunks, model="BAAI/bge-en-icl"):
|
|
|
|
|
361 |
"""
|
362 |
+
Batch the get_embedding call over your chunks.
|
363 |
+
Returns a list of numpy arrays.
|
364 |
"""
|
365 |
+
return [get_embedding(chunk, model=model) for chunk in text_chunks]
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
+
def generate_questions(text_chunk, num_questions=5):
|
370 |
+
"""
|
371 |
+
Use LED to generate a small set of probing questions
|
372 |
+
about this chunk that the final answer should address.
|
373 |
+
"""
|
374 |
+
prompt = (
|
375 |
+
"You are a question-generation expert. "
|
376 |
+
"From the text below, generate "
|
377 |
+
f"{num_questions} concise questions:\n\n{text_chunk}"
|
378 |
)
|
379 |
+
out = led_summarizer(
|
380 |
+
prompt,
|
381 |
+
max_length=128,
|
382 |
+
min_length=32,
|
383 |
+
num_beams=4,
|
384 |
+
do_sample=False
|
385 |
+
)[0]["summary_text"]
|
386 |
+
# assume each question on its own line
|
387 |
+
questions = [q.strip() for q in out.split("\n") if q.strip()]
|
388 |
+
return questions[:num_questions]
|
389 |
+
|
390 |
+
|
391 |
+
def process_document(document_text):
|
392 |
+
"""
|
393 |
+
1) chunk the document
|
394 |
+
2) embed each chunk with your SentenceTransformer
|
395 |
+
returns chunks, embeddings
|
396 |
+
"""
|
397 |
+
chunks = chunk_text_custom(document_text, n=800, overlap=200)
|
398 |
+
embeddings = embedder.encode(chunks, convert_to_tensor=False)
|
399 |
+
return chunks, embeddings
|
400 |
|
|
|
401 |
|
402 |
+
def semantic_search(query, chunks, chunk_embeddings, k=5):
|
403 |
"""
|
404 |
+
Score each chunk by cosine similarity to the query embed
|
405 |
+
and return the top-k chunks (in descending order).
|
406 |
+
"""
|
407 |
+
q_emb = embedder.encode([query], convert_to_tensor=False)[0]
|
408 |
+
scores = [
|
409 |
+
float(np.dot(q_emb, emb) / (np.linalg.norm(q_emb) * np.linalg.norm(emb)))
|
410 |
+
for emb in chunk_embeddings
|
411 |
+
]
|
412 |
+
top_idxs = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:k]
|
413 |
+
return [chunks[i] for i in top_idxs]
|
414 |
+
|
415 |
+
|
416 |
+
def prepare_context(questions, chunks, chunk_embeddings, k_per_question=2):
|
417 |
+
"""
|
418 |
+
For each generated question, pick its top-k supporting chunks,
|
419 |
+
then dedupe & concatenate into one context string.
|
420 |
+
"""
|
421 |
+
selected = []
|
422 |
+
for q in questions:
|
423 |
+
best = semantic_search(q, chunks, chunk_embeddings, k=k_per_question)
|
424 |
+
selected.extend(best)
|
425 |
+
|
426 |
+
# dedupe while preserving order
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
seen = set()
|
428 |
+
context = []
|
429 |
+
for c in selected:
|
430 |
+
if c not in seen:
|
431 |
+
seen.add(c)
|
432 |
+
context.append(c)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
|
434 |
+
return "\n\n".join(f"• {c}" for c in context)
|
435 |
|
436 |
+
def rag_query_response(prompt, document_text):
|
437 |
"""
|
438 |
+
Document-Augmentation RAG:
|
439 |
+
1. generate probing sub-questions about the doc
|
440 |
+
2. process the doc (chunk + embed)
|
441 |
+
3. build minimal context via those questions
|
442 |
+
4. feed context + user prompt into LED
|
443 |
+
5. paraphrase (humanize)
|
444 |
+
"""
|
445 |
+
# 1) Probing questions
|
446 |
+
questions = generate_questions(document_text, num_questions=5)
|
447 |
+
|
448 |
+
# 2) Chunk & embed the document
|
449 |
+
chunks, chunk_embs = process_document(document_text)
|
450 |
+
|
451 |
+
# 3) Assemble the distilled context
|
452 |
+
context = prepare_context(questions, chunks, chunk_embs, k_per_question=2)
|
453 |
+
|
454 |
+
# 4) Compose the LED input
|
455 |
+
led_input = (
|
456 |
+
"You are a knowledgeable legal assistant. "
|
457 |
+
"Answer the user’s question **using ONLY** the context below, "
|
458 |
+
"and speak in a friendly, conversational tone.\n\n"
|
459 |
+
f"Context:\n{context}\n\n"
|
460 |
+
f"Question: {prompt}\n\nAnswer:"
|
461 |
)
|
|
|
|
|
462 |
|
463 |
+
raw = led_summarizer(
|
464 |
+
led_input,
|
465 |
+
max_length=512,
|
466 |
+
min_length=64,
|
467 |
+
do_sample=False
|
468 |
+
)[0]["summary_text"]
|
469 |
|
470 |
+
# 5) Humanize
|
471 |
+
return humanize(raw)
|
472 |
|
473 |
#######################################################################################################################
|
474 |
|
|
|
548 |
return "\n\n".join(combined_chunks)
|
549 |
|
550 |
|
551 |
+
###################################################################################################################
|
552 |
+
|
553 |
+
# Store cleaned text and FAISS index only when document is processed
|
554 |
+
|
555 |
+
# Embedding for chunking
|
556 |
+
|
557 |
+
|
558 |
##############################################################################################################
|
559 |
|
560 |
user_role = st.sidebar.selectbox(
|
|
|
583 |
|
584 |
|
585 |
|
586 |
+
|
587 |
+
|
588 |
#########################################################################################################################
|
589 |
|
590 |
|
|
|
593 |
if file_hash != st.session_state.last_uploaded_hash or reprocess_btn:
|
594 |
st.session_state.processed = False
|
595 |
|
596 |
+
# if is_new_file or reprocess_btn:
|
597 |
+
# st.session_state.processed = False
|
598 |
+
|
599 |
if not st.session_state.processed:
|
600 |
start_time = time.time()
|
601 |
+
raw_text = extract_text(uploaded_file)
|
|
|
|
|
602 |
summary_dict = hybrid_summary_hierarchical(raw_text)
|
603 |
+
# timeline_data = extract_timeline(clean_text(raw_text))
|
604 |
embedding_text = prepare_text_for_embedding(summary_dict)
|
605 |
|
606 |
+
# Generate and display RAG-based summary
|
|
|
|
|
|
|
|
|
|
|
|
|
607 |
|
|
|
608 |
st.session_state.document_context = embedding_text
|
609 |
+
|
610 |
+
role_specific_prompt = f"As a {user_role}, summarize the legal document focusing on the most relevant aspects such as facts, arguments, and judgments tailored for your role. Include key legal reasoning and timeline of events where necessary."
|
611 |
+
rag_summary = rag_query_response(role_specific_prompt, embedding_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
612 |
|
|
|
|
|
|
|
|
|
|
|
613 |
|
614 |
+
st.session_state.messages.append({"role": "user", "content": f"📤 Uploaded **{uploaded_file.name}**"})
|
615 |
+
st.session_state.messages.append({"role": "assistant", "content": rag_summary})
|
616 |
+
|
|
|
|
|
|
|
|
|
|
|
617 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
618 |
display_with_typing_effect(rag_summary)
|
619 |
|
620 |
processing_time = round((time.time() - start_time) / 60, 2)
|
621 |
st.info(f"⏱️ Response generated in **{processing_time} minutes**.")
|
622 |
|
623 |
+
|
624 |
+
st.session_state.generated_summary = rag_summary #for Evalution
|
625 |
st.session_state.last_uploaded_hash = file_hash
|
626 |
st.session_state.processed = True
|
627 |
st.session_state.last_prompt_hash = None
|
628 |
save_chat_history(st.session_state.messages)
|
629 |
|
630 |
|
|
|
631 |
if prompt:
|
632 |
words = prompt.split()
|
633 |
+
word_count = len(words)
|
634 |
+
prompt_hash = hashlib.md5(prompt.encode("utf-8")).hexdigest()
|
635 |
|
636 |
+
# 1) LONG prompts – echo first, then summarize
|
637 |
if word_count > 30 and prompt_hash != st.session_state.last_prompt_hash:
|
638 |
+
# mark new prompt
|
639 |
st.session_state.last_prompt_hash = prompt_hash
|
640 |
|
641 |
+
# raw_text is just the prompt text
|
642 |
raw_text = prompt
|
643 |
+
|
644 |
st.session_state.messages.append({
|
645 |
"role": "user",
|
646 |
+
"content": f"📥 **Pasted Document Text:**\n\n{limit_text(raw_text, word_limit=500)}"
|
647 |
})
|
648 |
with st.chat_message("user", avatar=USER_AVATAR):
|
649 |
+
st.markdown(limit_text(raw_text, word_limit=500))
|
650 |
|
651 |
start_time = time.time()
|
652 |
+
summary_dict = hybrid_summary_hierarchical(raw_text)
|
653 |
+
emb_text = prepare_text_for_embedding(summary_dict)
|
654 |
+
|
655 |
st.session_state.document_context = emb_text
|
656 |
st.session_state.processed = True
|
657 |
|
658 |
+
role_prompt = (
|
659 |
+
f"As a {user_role}, summarize the document focusing on facts, "
|
660 |
+
"arguments, judgments, plus timeline of events."
|
661 |
+
)
|
662 |
+
initial_summary = rag_query_response(role_prompt, emb_text)
|
663 |
|
664 |
+
# 3️⃣ Append & display the assistant’s summary with typing effect
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
665 |
st.session_state.messages.append({
|
666 |
"role": "assistant",
|
667 |
"content": initial_summary
|
|
|
672 |
st.info(f"⏱️ Summary generated in {round((time.time()-start_time)/60,2)} minutes")
|
673 |
save_chat_history(st.session_state.messages)
|
674 |
|
675 |
+
# 2) SHORT prompts: normal RAG against last context
|
|
|
676 |
elif word_count <= 30 and st.session_state.processed:
|
677 |
+
|
678 |
+
role_query = f"As a {user_role}, {prompt}"
|
679 |
+
answer = rag_query_response(role_query, st.session_state.document_context)
|
680 |
+
answer = rag_query_response(prompt, st.session_state.document_context)
|
681 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
682 |
+
st.session_state.messages.append({"role": "assistant","content": answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
683 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
684 |
display_with_typing_effect(answer)
|
685 |
save_chat_history(st.session_state.messages)
|
686 |
|
687 |
+
# 3) Ingest prompt to start
|
|
|
688 |
else:
|
689 |
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
690 |
st.markdown("❗ Paste at least 30 words of your document to ingest it first.")
|
691 |
|
692 |
|
693 |
################################Evaluation###########################
|
|
|
|
|
694 |
# 📚 Imports
|
695 |
import evaluate
|
696 |
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
|
|
746 |
else:
|
747 |
st.warning("⚠️ Please generate a summary first by uploading a document.")
|
748 |
|
|
|
|
|
749 |
######################################################################################################################
|
750 |
|
751 |
|