Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import sys | |
from typing import Sequence, Mapping, Any, Union | |
import torch | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
# Download required models | |
t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp8_e4m3fn.safetensors", local_dir="models/text_encoders/") | |
vae_path = hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae") | |
unet_path = hf_hub_download(repo_id="lodestones/Chroma", filename="chroma-unlocked-v31.safetensors", local_dir="models/unet") | |
# Import the workflow functions | |
from my_workflow import ( | |
get_value_at_index, | |
add_comfyui_directory_to_sys_path, | |
add_extra_model_paths, | |
import_custom_nodes, | |
NODE_CLASS_MAPPINGS, | |
CLIPTextEncode, | |
CLIPLoader, | |
VAEDecode, | |
UNETLoader, | |
VAELoader, | |
SaveImage, | |
) | |
# Initialize ComfyUI | |
add_comfyui_directory_to_sys_path() | |
add_extra_model_paths() | |
import_custom_nodes() | |
def generate_image(prompt, negative_prompt, width, height, steps, cfg, seed): | |
with torch.inference_mode(): | |
# Set random seed if provided | |
if seed == -1: | |
seed = random.randint(1, 2**64) | |
random.seed(seed) | |
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
randomnoise_68 = randomnoise.get_noise(noise_seed=seed) | |
emptysd3latentimage = NODE_CLASS_MAPPINGS["EmptySD3LatentImage"]() | |
emptysd3latentimage_69 = emptysd3latentimage.generate( | |
width=width, height=height, batch_size=1 | |
) | |
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
ksamplerselect_72 = ksamplerselect.get_sampler(sampler_name="euler") | |
cliploader = CLIPLoader() | |
cliploader_78 = cliploader.load_clip( | |
clip_name="t5xxl_fp8_e4m3fn.safetensors", type="chroma", device="default" | |
) | |
t5tokenizeroptions = NODE_CLASS_MAPPINGS["T5TokenizerOptions"]() | |
t5tokenizeroptions_82 = t5tokenizeroptions.set_options( | |
min_padding=1, min_length=0, clip=get_value_at_index(cliploader_78, 0) | |
) | |
cliptextencode = CLIPTextEncode() | |
cliptextencode_74 = cliptextencode.encode( | |
text=prompt, | |
clip=get_value_at_index(t5tokenizeroptions_82, 0), | |
) | |
cliptextencode_75 = cliptextencode.encode( | |
text=negative_prompt, | |
clip=get_value_at_index(t5tokenizeroptions_82, 0), | |
) | |
unetloader = UNETLoader() | |
unetloader_76 = unetloader.load_unet( | |
unet_name="chroma-unlocked-v31.safetensors", weight_dtype="fp8_e4m3fn" | |
) | |
vaeloader = VAELoader() | |
vaeloader_80 = vaeloader.load_vae(vae_name="ae.safetensors") | |
cfgguider = NODE_CLASS_MAPPINGS["CFGGuider"]() | |
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
vaedecode = VAEDecode() | |
saveimage = SaveImage() | |
cfgguider_73 = cfgguider.get_guider( | |
cfg=cfg, | |
model=get_value_at_index(unetloader_76, 0), | |
positive=get_value_at_index(cliptextencode_74, 0), | |
negative=get_value_at_index(cliptextencode_75, 0), | |
) | |
basicscheduler_84 = basicscheduler.get_sigmas( | |
scheduler="beta", | |
steps=steps, | |
denoise=1, | |
model=get_value_at_index(unetloader_76, 0), | |
) | |
samplercustomadvanced_67 = samplercustomadvanced.sample( | |
noise=get_value_at_index(randomnoise_68, 0), | |
guider=get_value_at_index(cfgguider_73, 0), | |
sampler=get_value_at_index(ksamplerselect_72, 0), | |
sigmas=get_value_at_index(basicscheduler_84, 0), | |
latent_image=get_value_at_index(emptysd3latentimage_69, 0), | |
) | |
vaedecode_79 = vaedecode.decode( | |
samples=get_value_at_index(samplercustomadvanced_67, 0), | |
vae=get_value_at_index(vaeloader_80, 0), | |
) | |
# Instead of saving to file, return the image directly | |
return get_value_at_index(vaedecode_79, 0) | |
# Create Gradio interface | |
with gr.Blocks() as app: | |
gr.Markdown("# Chroma Image Generator") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your prompt here...", | |
lines=3 | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
placeholder="Enter negative prompt here...", | |
value="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors", | |
lines=2 | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
minimum=512, | |
maximum=2048, | |
value=1024, | |
step=64, | |
label="Width" | |
) | |
height = gr.Slider( | |
minimum=512, | |
maximum=2048, | |
value=1024, | |
step=64, | |
label="Height" | |
) | |
with gr.Row(): | |
steps = gr.Slider( | |
minimum=1, | |
maximum=50, | |
value=26, | |
step=1, | |
label="Steps" | |
) | |
cfg = gr.Slider( | |
minimum=1, | |
maximum=20, | |
value=4, | |
step=0.5, | |
label="CFG Scale" | |
) | |
seed = gr.Number( | |
value=-1, | |
label="Seed (-1 for random)" | |
) | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[prompt, negative_prompt, width, height, steps, cfg, seed], | |
outputs=[output_image] | |
) | |
if __name__ == "__main__": | |
app.launch(share=True) | |