Spaces:
Running
Running
chore: device optimization
Browse files
app.py
CHANGED
@@ -24,13 +24,21 @@ class MedGemmaSymptomAnalyzer:
|
|
24 |
logger.info("Initializing MedGemma Symptom Analyzer...")
|
25 |
|
26 |
def load_model(self):
|
27 |
-
"""Load MedGemma model with optimizations for deployment"""
|
28 |
if self.model_loaded:
|
29 |
return True
|
30 |
|
31 |
model_name = "google/medgemma-4b-it"
|
32 |
logger.info(f"Loading model: {model_name}")
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
try:
|
35 |
# Get HF token from environment (set in Hugging Face Spaces secrets)
|
36 |
hf_token = os.getenv("HF_TOKEN")
|
@@ -39,33 +47,124 @@ class MedGemmaSymptomAnalyzer:
|
|
39 |
else:
|
40 |
logger.warning("HF_TOKEN not found in environment variables")
|
41 |
|
42 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
logger.info("Loading tokenizer...")
|
44 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
45 |
model_name,
|
46 |
-
token=hf_token
|
|
|
47 |
)
|
48 |
|
49 |
-
logger.info("Loading model...")
|
50 |
-
# Simplified loading for CPU/compatibility
|
51 |
self.model = AutoModelForCausalLM.from_pretrained(
|
52 |
model_name,
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
token=hf_token
|
57 |
)
|
58 |
|
|
|
59 |
if self.tokenizer.pad_token is None:
|
60 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
self.model_loaded = True
|
63 |
-
logger.info("Model loaded successfully!")
|
64 |
return True
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
except Exception as e:
|
67 |
logger.error(f"Failed to load model {model_name}: {str(e)}", exc_info=True)
|
68 |
logger.warning("Falling back to demo mode due to model loading failure")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
self.model = None
|
70 |
self.tokenizer = None
|
71 |
self.model_loaded = False
|
|
|
24 |
logger.info("Initializing MedGemma Symptom Analyzer...")
|
25 |
|
26 |
def load_model(self):
|
27 |
+
"""Load MedGemma model with optimizations for deployment and CPU compatibility"""
|
28 |
if self.model_loaded:
|
29 |
return True
|
30 |
|
31 |
model_name = "google/medgemma-4b-it"
|
32 |
logger.info(f"Loading model: {model_name}")
|
33 |
|
34 |
+
# Detect available device and log system info
|
35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
logger.info(f"Device detected: {device}")
|
37 |
+
if device == "cpu":
|
38 |
+
logger.info(f"CPU threads available: {torch.get_num_threads()}")
|
39 |
+
else:
|
40 |
+
logger.info(f"CUDA device: {torch.cuda.get_device_name()}")
|
41 |
+
|
42 |
try:
|
43 |
# Get HF token from environment (set in Hugging Face Spaces secrets)
|
44 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
47 |
else:
|
48 |
logger.warning("HF_TOKEN not found in environment variables")
|
49 |
|
50 |
+
# Optimize settings based on device
|
51 |
+
if device == "cpu":
|
52 |
+
logger.info("Configuring for CPU-optimized loading...")
|
53 |
+
torch_dtype = torch.float32
|
54 |
+
device_map = "cpu"
|
55 |
+
# Set optimal number of threads for CPU inference
|
56 |
+
torch.set_num_threads(max(1, torch.get_num_threads() // 2))
|
57 |
+
|
58 |
+
# Additional CPU optimizations
|
59 |
+
import psutil
|
60 |
+
available_memory_gb = psutil.virtual_memory().available / (1024**3)
|
61 |
+
logger.info(f"Available memory: {available_memory_gb:.1f} GB")
|
62 |
+
|
63 |
+
# Enable memory-efficient loading for low-memory systems
|
64 |
+
cpu_loading_kwargs = {
|
65 |
+
"low_cpu_mem_usage": True,
|
66 |
+
"torch_dtype": torch_dtype,
|
67 |
+
"device_map": device_map
|
68 |
+
}
|
69 |
+
|
70 |
+
# Use offloading for very low memory systems (< 8GB available)
|
71 |
+
if available_memory_gb < 8:
|
72 |
+
logger.warning("Low memory detected, enabling aggressive memory optimizations")
|
73 |
+
cpu_loading_kwargs.update({
|
74 |
+
"offload_folder": "/tmp/model_offload",
|
75 |
+
"offload_state_dict": True
|
76 |
+
})
|
77 |
+
else:
|
78 |
+
logger.info("Configuring for GPU loading...")
|
79 |
+
torch_dtype = torch.float16
|
80 |
+
device_map = "auto"
|
81 |
+
cpu_loading_kwargs = {
|
82 |
+
"torch_dtype": torch_dtype,
|
83 |
+
"device_map": device_map,
|
84 |
+
"low_cpu_mem_usage": True
|
85 |
+
}
|
86 |
+
|
87 |
logger.info("Loading tokenizer...")
|
88 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
89 |
model_name,
|
90 |
+
token=hf_token,
|
91 |
+
use_fast=True # Use fast tokenizer for better performance
|
92 |
)
|
93 |
|
94 |
+
logger.info(f"Loading model with dtype={torch_dtype}, device_map={device_map}...")
|
|
|
95 |
self.model = AutoModelForCausalLM.from_pretrained(
|
96 |
model_name,
|
97 |
+
token=hf_token,
|
98 |
+
trust_remote_code=False, # Security best practice
|
99 |
+
**cpu_loading_kwargs
|
|
|
100 |
)
|
101 |
|
102 |
+
# Ensure pad token is set
|
103 |
if self.tokenizer.pad_token is None:
|
104 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
105 |
+
|
106 |
+
# Move model to appropriate device if needed
|
107 |
+
if device == "cpu" and hasattr(self.model, 'to'):
|
108 |
+
self.model = self.model.to('cpu')
|
109 |
+
logger.info("Model moved to CPU")
|
110 |
|
111 |
self.model_loaded = True
|
112 |
+
logger.info(f"Model loaded successfully on {device}!")
|
113 |
return True
|
114 |
|
115 |
+
except torch.cuda.OutOfMemoryError as e:
|
116 |
+
logger.error(f"GPU out of memory: {str(e)}")
|
117 |
+
logger.info("Attempting CPU fallback due to GPU memory constraints...")
|
118 |
+
try:
|
119 |
+
# Force CPU loading if GPU fails
|
120 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
121 |
+
model_name,
|
122 |
+
token=hf_token,
|
123 |
+
trust_remote_code=False,
|
124 |
+
torch_dtype=torch.float32,
|
125 |
+
device_map="cpu",
|
126 |
+
low_cpu_mem_usage=True
|
127 |
+
)
|
128 |
+
self.model_loaded = True
|
129 |
+
logger.info("Model loaded successfully on CPU after GPU failure!")
|
130 |
+
return True
|
131 |
+
except Exception as fallback_e:
|
132 |
+
logger.error(f"CPU fallback also failed: {str(fallback_e)}")
|
133 |
+
self.model = None
|
134 |
+
self.tokenizer = None
|
135 |
+
self.model_loaded = False
|
136 |
+
return False
|
137 |
+
except ImportError as e:
|
138 |
+
logger.error(f"Missing dependency for model loading: {str(e)}")
|
139 |
+
logger.info("Please ensure all required packages are installed: pip install -r requirements.txt")
|
140 |
+
self.model = None
|
141 |
+
self.tokenizer = None
|
142 |
+
self.model_loaded = False
|
143 |
+
return False
|
144 |
+
except OSError as e:
|
145 |
+
if "disk quota exceeded" in str(e).lower() or "no space left" in str(e).lower():
|
146 |
+
logger.error("Insufficient disk space for model loading")
|
147 |
+
logger.info("Please free up disk space and try again")
|
148 |
+
elif "connection" in str(e).lower() or "timeout" in str(e).lower():
|
149 |
+
logger.error("Network connection issue during model download")
|
150 |
+
logger.info("Please check your internet connection and try again")
|
151 |
+
else:
|
152 |
+
logger.error(f"OS error during model loading: {str(e)}")
|
153 |
+
self.model = None
|
154 |
+
self.tokenizer = None
|
155 |
+
self.model_loaded = False
|
156 |
+
return False
|
157 |
except Exception as e:
|
158 |
logger.error(f"Failed to load model {model_name}: {str(e)}", exc_info=True)
|
159 |
logger.warning("Falling back to demo mode due to model loading failure")
|
160 |
+
|
161 |
+
# Provide helpful troubleshooting info
|
162 |
+
if device == "cpu":
|
163 |
+
logger.info("CPU loading troubleshooting tips:")
|
164 |
+
logger.info("- Ensure sufficient RAM (minimum 8GB recommended)")
|
165 |
+
logger.info("- Check that PyTorch CPU version is installed")
|
166 |
+
logger.info("- Verify HuggingFace token is valid")
|
167 |
+
|
168 |
self.model = None
|
169 |
self.tokenizer = None
|
170 |
self.model_loaded = False
|