beyondrag / app.py
giulio98's picture
update
42bc715
raw
history blame
32.2 kB
import copy
import math
import os
import time
from threading import Thread
import uuid
import gradio as gr
import spaces
import torch
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.document_converter import DocumentConverter, InputFormat, PdfFormatOption
from langchain.schema.document import Document
from langchain_chroma import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_docling import DoclingLoader
from langchain_docling.loader import ExportType
from langchain_text_splitters import RecursiveCharacterTextSplitter
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, TextIteratorStreamer
from transformers.models.llama.modeling_llama import rotate_half
from utils import (
calculate_tokens_suggest_compression_ratio,
repeat_kv,
update_retrieval_context,
)
# Initialize the model and tokenizer.
api_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
model_name = "meta-llama/Llama-3.1-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_token)
model = AutoModelForCausalLM.from_pretrained(model_name, token=api_token, torch_dtype=torch.float16)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.eval()
model.to(device)
embedding_model = HuggingFaceBgeEmbeddings(
model_name="BAAI/bge-large-en-v1.5",
model_kwargs={"device": str(device)},
encode_kwargs={"normalize_embeddings": True},
query_instruction=""
)
# Create a chat template and split into prefix and suffix.
content_system = ""
content_user = "######"
user_template = [
{"role": "system", "content": content_system},
{"role": "user", "content": content_user}
]
user = tokenizer.apply_chat_template(user_template, add_generation_prompt=True, tokenize=False)
prefix, suffix = user.split(content_user)
sink_tokens = max(4, len(tokenizer.encode(prefix)))
# Default prompt content.
default_task_description = (
"Answer the question based on the given passages. "
"Only give me the answer and do not output any other words."
)
default_few_shot = """Examples
question: Which case was brought to court first Miller v. California or Gates v. Collier ?
answer: Miller v. California
question: The actor that plays Phileas Fogg in "Around the World in 80 Days", co-starred with Gary Cooper in a 1939 Goldwyn Productions film based on a novel by what author?
answer: Charles L. Clifford
question: Prior to playing for Michigan State, Keith Nichol played football for a school located in what city?
answer: Norman
"""
class FinchCache(DynamicCache):
def __init__(self) -> None:
super().__init__()
self.key_cache = []
self.value_cache = []
@staticmethod
def _rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _apply_key_rotary_pos_emb(self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
return (key_states * cos) + (self._rotate_half(key_states) * sin)
@staticmethod
def _rerotate_cos_sin(x, inv_freq, important_pos_batch):
B, H, L = important_pos_batch.shape
device = important_pos_batch.device
device_type = x.device.type
dtype = x.dtype
idx = torch.arange(0, L, device=device)
idx = idx.unsqueeze(0)
inv_freq = inv_freq[None, None, :, None].float().expand(B, H, -1, 1) # (B, H, M, 1)
idx = idx[:, None, :].float().expand(B, H, L) # (B, H, L)
delta_pos = idx - important_pos_batch
delta_pos = delta_pos.unsqueeze(2) # (B, H, 1, L)
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = delta_pos.float() * inv_freq.float()
freqs = freqs.transpose(2, 3)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos().contiguous()
sin = emb.sin().contiguous()
return cos.to(dtype=dtype), sin.to(dtype=dtype)
@staticmethod
def gather_important_tokens(states, indices):
return torch.gather(states, 2, indices.unsqueeze(-1).expand(-1, -1, -1, states.size(3))).contiguous()
def compress_cache(self, layer_index, important_pos, inv_freq):
new_length = important_pos.size(2)
new_cos, new_sin = self._rerotate_cos_sin(self.key_cache[layer_index], inv_freq, important_pos)
gathered_keys = self.gather_important_tokens(self.key_cache[layer_index], important_pos).clone()
self.key_cache[layer_index] = self._apply_key_rotary_pos_emb(gathered_keys, new_cos, new_sin)
gathered_values = self.gather_important_tokens(self.value_cache[layer_index], important_pos).clone()
self.value_cache[layer_index] = gathered_values
self._seen_tokens = new_length
def save(self, path: str):
try:
os.makedirs(os.path.dirname(path), exist_ok=True)
torch.save(
{"key_cache": [k.cpu() for k in self.key_cache], "value_cache": [v.cpu() for v in self.value_cache]},
path,
)
except Exception as e:
print(f"Error occurred while saving: {e}")
@classmethod
def load(cls, path: str, device: str = "cpu") -> "FinchCache":
data = torch.load(path, map_location=device)
cache = cls()
cache.key_cache = [k.to(device) for k in data["key_cache"]]
cache.value_cache = [v.to(device) for v in data["value_cache"]]
cache._seen_tokens = cache.value_cache[0].size(2) if cache.value_cache else 0
return cache
def convert_to_markdown(file_objs, url, do_ocr, do_table_structure):
file_path = file_objs if file_objs is not None else url
pipeline_options = PdfPipelineOptions()
pipeline_options.do_ocr = do_ocr
pipeline_options.do_table_structure = do_table_structure
pdf_format_options = PdfFormatOption(
pipeline_options=pipeline_options,
backend=PyPdfiumDocumentBackend,
)
doc_converter = DocumentConverter(
allowed_formats=[InputFormat.PDF],
format_options={InputFormat.PDF: pdf_format_options}
)
loader = DoclingLoader(
file_path=file_path,
export_type=ExportType.MARKDOWN,
converter=doc_converter
)
docs = loader.load()
return docs[0].page_content
def create_rag_index(collection_name, text_no_prefix):
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
tokenizer,
chunk_size=256,
chunk_overlap=0,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
docs = [Document(page_content=x) for x in text_splitter.split_text(text_no_prefix)]
vectorstore = Chroma.from_documents(collection_name=collection_name, persist_directory="./chroma_db", documents=docs, embedding=embedding_model)
return vectorstore
@spaces.GPU
def auto_convert(file_objs, url, do_ocr, do_table_structure):
# When a new file/URL is loaded, disable chat (compression not done)
chat_status = "Document not compressed yet. Please compress the document to enable chat."
if file_objs is None and (url is None or url.strip() == ""):
return (
gr.update(value=""),
"Number of tokens before compression: ",
gr.update(),
"Number of tokens after compression: ",
0,
gr.update(interactive=False),
False,
{},
chat_status
)
print("Converting to markdown")
try:
markdown = convert_to_markdown(file_objs, url, do_ocr, do_table_structure)
except Exception as e:
print("Error converting to markdown:", e)
return (
gr.update(value="Error converting document to markdown. Please try uploading another document format."),
"Number of tokens before compression: ",
gr.update(),
"Number of tokens after compression: ",
0,
gr.update(interactive=False),
False,
{},
chat_status
)
print("Done")
combined_text = prefix + markdown
print("Suggestioning Compression ratio")
token_count, suggestions, _ = calculate_tokens_suggest_compression_ratio(combined_text, tokenizer, model)
print("Done")
min_ratio = min(suggestions)
max_ratio = max(suggestions)
default_ratio = suggestions[len(suggestions) // 2]
retrieval_tokens = int(token_count / default_ratio)
token_count_str = f"Number of tokens before compression: {token_count}"
retrieval_str = f"Number of tokens after compression: {retrieval_tokens}"
slider_update = gr.update(value=default_ratio, minimum=min_ratio, maximum=max_ratio, step=1)
if combined_text.startswith(prefix):
rag_text = combined_text[len(prefix):]
else:
rag_text = combined_text
collection_name = "default_collection_" + uuid.uuid4().hex[:6]
rag_index = create_rag_index(collection_name, rag_text)
state = {"rag_index": collection_name}
print("Done")
return (
combined_text,
token_count_str,
slider_update,
retrieval_str,
token_count,
gr.update(interactive=True), # Enable compress button if conversion succeeds.
False,
state,
chat_status
)
def get_compressed_kv_cache(sink_tokens, step_size, target_token_size, context_ids, context_attention_mask, question_ids, question_attention_mask):
device = model.device
dtype = model.dtype
sink_tokens = sink_tokens
num_chunks = step_size
context_ids = context_ids.to(device)
context_attention_mask = context_attention_mask.to(device)
question_ids = question_ids.to(device)
question_attention_mask = question_attention_mask.to(device)
question_len = question_ids.size(1)
total_len = context_ids.size(1)
max_context_tokens_allowed = model.config.max_position_embeddings - question_len
if total_len > max_context_tokens_allowed:
num_chunks = max(step_size, math.ceil(total_len / max_context_tokens_allowed))
if total_len <= sink_tokens or num_chunks == 1:
context_ids_list = [context_ids]
context_attention_mask_list = [context_attention_mask]
else:
remainder_len = total_len - sink_tokens
base = remainder_len // num_chunks
leftover = remainder_len % num_chunks
chunk_sizes = [sink_tokens + base]
for _ in range(num_chunks - 2):
chunk_sizes.append(base)
if num_chunks > 1:
chunk_sizes.append(base + leftover)
context_ids_list = []
context_attention_mask_list = []
offset = 0
for size in chunk_sizes:
end = offset + size
context_ids_list.append(context_ids[:, offset:end])
context_attention_mask_list.append(context_attention_mask[:, offset:end])
offset = end
len_rest = max(total_len - sink_tokens, 1)
compression_factor = len_rest // target_token_size
if compression_factor < 1:
compression_factor = 1
tokenized_doc_chunks = []
for ids_chunk, mask_chunk in zip(context_ids_list, context_attention_mask_list):
tokenized_doc_chunks.append({"input_ids": ids_chunk, "attention_mask": mask_chunk})
print("Number of chunks: ", len(tokenized_doc_chunks))
rotary_emb = model.model.rotary_emb.to(device)
inv_freq = rotary_emb.inv_freq
batch_size = question_ids.size(0)
ones_mask = torch.ones(batch_size, 1, dtype=question_attention_mask.dtype, device=device)
cache = FinchCache()
past_cache_len = 0
past_attention_mask = torch.zeros(batch_size, 0, dtype=question_attention_mask.dtype, device=device)
num_chunks = len(tokenized_doc_chunks)
query_context_matrices = {}
def query_hook_fn(module, input, output):
layer_idx = getattr(module, "layer_idx", None)
if layer_idx is not None:
query_states = output.detach()
bsz, seq_len, hidden_dim = query_states.size()
num_query_heads = module.num_query_heads
head_dim = hidden_dim // num_query_heads
query_states = (
query_states.view(bsz, seq_len, num_query_heads, head_dim)
.transpose(1, 2)
.contiguous()
)
query_context_matrices[layer_idx] = query_states[:, :, _current_chunk_offset:, :].clone()
hooks = []
for i, layer in enumerate(model.model.layers):
layer.self_attn.q_proj.layer_idx = i
layer.self_attn.q_proj.num_query_heads = layer.self_attn.config.num_attention_heads
hook = layer.self_attn.q_proj.register_forward_hook(query_hook_fn)
hooks.append(hook)
for j, tokenized_doc_chunk in enumerate(tokenized_doc_chunks):
current_seq_length = tokenized_doc_chunk["input_ids"].size(1)
_current_chunk_offset = current_seq_length
query_context_matrices.clear()
chunk_input_ids = tokenized_doc_chunk["input_ids"].contiguous()
chunk_attention_mask = tokenized_doc_chunk["attention_mask"].contiguous()
segment_attention_mask = torch.cat(
[past_attention_mask, chunk_attention_mask, ones_mask], dim=-1
).contiguous()
current_input_ids = torch.cat([chunk_input_ids, question_ids], dim=-1).contiguous()
current_attention_mask = torch.cat([segment_attention_mask, question_attention_mask], dim=-1).contiguous()
past_seen_tokens = cache.get_seq_length() if cache is not None else 0
cache_position = torch.arange(
past_seen_tokens + chunk_input_ids.shape[1],
past_seen_tokens + current_input_ids.shape[1],
device=device
)
causal_mask = model.model._prepare_4d_causal_attention_mask_with_cache_position(
current_attention_mask,
sequence_length=question_ids.size(1),
target_length=current_attention_mask.size(-1),
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=current_input_ids.size(0),
).contiguous()
with torch.no_grad():
outputs = model.model(
input_ids=current_input_ids,
use_cache=True,
past_key_values=cache,
)
cache = outputs.past_key_values
len_question = question_ids.size(1)
for layer_idx in range(len(model.model.layers)):
key_matrix = cache.key_cache[layer_idx]
query_matrix = query_context_matrices[layer_idx]
layer_cache_pos = torch.arange(
past_cache_len + current_seq_length,
past_cache_len + current_seq_length + len_question,
device=device
)
position_ids = layer_cache_pos.unsqueeze(0)
cos, sin = rotary_emb(query_matrix, position_ids)
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
query_matrix = (query_matrix * cos) + (rotate_half(query_matrix) * sin)
num_repeats = model.config.num_attention_heads // model.config.num_key_value_heads
key_matrix = repeat_kv(key_matrix, num_repeats)
scaling = math.sqrt(model.config.head_dim)
attention_matrix = torch.matmul(query_matrix, key_matrix.transpose(2, 3)) / scaling
causal_mask_sliced = causal_mask[:, :, :, : key_matrix.shape[-2]]
attention_matrix = attention_matrix + causal_mask_sliced
attention_matrix = torch.nn.functional.softmax(attention_matrix, dim=-1, dtype=torch.float32).to(query_matrix.dtype)
tol = 1e-8
binary_mask = (torch.abs(causal_mask_sliced.to(torch.float32)) < tol).to(torch.float32)
non_zero_counts = binary_mask.sum(dim=3, keepdim=True)
non_zero_counts = torch.clamp_min(non_zero_counts, 1.0).to(attention_matrix.dtype)
attention_matrix = attention_matrix / non_zero_counts
if j != num_chunks - 1:
attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length].clone().contiguous()
else:
attention_matrix = attention_matrix[:, :, :, : past_cache_len + current_seq_length + len_question].clone().contiguous()
attention_matrix = torch.sum(attention_matrix, dim=-2)
attention_matrix = attention_matrix.view(
attention_matrix.size(0), model.config.num_key_value_heads, num_repeats, -1
).sum(dim=2)
full_context_size = attention_matrix.size(-1)
attention_matrix[..., :sink_tokens] = float("inf")
if j == num_chunks - 1:
attention_matrix[..., -len_question:] = float("inf")
if j == 0:
k = int(sink_tokens + (max(0, current_seq_length - sink_tokens) // compression_factor))
k = min(k + past_cache_len, full_context_size)
elif j < num_chunks - 1:
to_keep_new = int(current_seq_length // compression_factor)
k = min(past_cache_len + to_keep_new, full_context_size)
else:
desired_final = sink_tokens + target_token_size + len_question
k = desired_final if full_context_size >= desired_final else full_context_size
k = max(k, sink_tokens)
selected_indices = torch.topk(attention_matrix, k, dim=-1).indices
selected_indices, _ = torch.sort(selected_indices, dim=-1)
cache.compress_cache(layer_idx, selected_indices, inv_freq)
past_cache_len = cache._seen_tokens
past_attention_mask = torch.ones(1, past_cache_len, device=device)
for hook in hooks:
hook.remove()
return cache
def run_naive_rag_query(collection_name, query, rag_token_size, prefix, task, few_shot_examples):
k = max(1, rag_token_size // 256)
vectorstore = Chroma(persist_directory="./chroma_db", embedding_function=embedding_model, collection_name=collection_name)
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": k})
retrieved_docs = retriever.invoke(query)
for doc in retrieved_docs:
print("=================")
print(doc.page_content)
print("=================")
formatted_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
rag_context = prefix + "Retrieved context: \n" + formatted_context + task + few_shot_examples
return rag_context
@spaces.GPU
def prepare_compression_and_rag(combined_text, retrieval_slider_value, global_local_value, task_description, few_shot, state):
percentage = int(global_local_value.replace('%', ''))
question_text = task_description + "\n" + few_shot
context_encoding = tokenizer(combined_text, return_tensors="pt").to(device)
question_encoding = tokenizer(question_text, return_tensors="pt").to(device)
context_ids = context_encoding["input_ids"]
context_attention_mask = context_encoding["attention_mask"]
question_ids = question_encoding["input_ids"]
question_attention_mask = question_encoding["attention_mask"]
retrieval_context_length = int(context_ids.size(1) / retrieval_slider_value)
# Compute token breakdown for display (KV compress vs RAG tokens)
rag_tokens = int(retrieval_context_length * (1.0 - (percentage / 100)))
kv_tokens = retrieval_context_length - rag_tokens
print(f"KV Compress Tokens: {kv_tokens}, RAG Tokens: {rag_tokens}")
if percentage > 0:
target_token_size = int(retrieval_context_length * (percentage / 100))
print("Target token size for compression: ", target_token_size)
step_size = 2
start_time_prefill = time.perf_counter()
try:
past_key_values = copy.deepcopy(get_compressed_kv_cache(sink_tokens, step_size, target_token_size,
context_ids, context_attention_mask,
question_ids, question_attention_mask))
except Exception as e:
print("Error during KV cache compression:", e)
state["error"] = "Error during KV cache compression. Please try lowering the compression ratio and try again."
return state, False
compressed_length = past_key_values.get_seq_length()
print("Context size after compression: ", compressed_length)
print("Compression rate: ", context_ids.size(1) / compressed_length)
else:
start_time_prefill = 0
target_token_size = 0
past_key_values = FinchCache()
compressed_length = past_key_values.get_seq_length()
cache_name = "default_cache_" + uuid.uuid4().hex[:6] + ".pt"
save_dir = "./cache_dir"
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, cache_name)
past_key_values.save(save_path)
collection_name = state.get("rag_index", None)
if collection_name is None:
print("Collection name not found creating a new one.")
if combined_text.startswith(prefix):
rag_text = combined_text[len(prefix):]
else:
rag_text = combined_text
collection_name = "default_collection_" + uuid.uuid4().hex[:6]
rag_index = create_rag_index(collection_name, rag_text)
state.update({
"compressed_cache": save_path,
"compressed_length": compressed_length,
"rag_index": collection_name,
"target_token_size": target_token_size,
"global_local": percentage,
"combined_text": combined_text,
"task_description": task_description,
"few_shot": few_shot,
"retrieval_slider": retrieval_context_length,
"prefill_time": time.perf_counter() - start_time_prefill,
"compression_done": True,
"tokens_breakdown": f"KV Compress Tokens: {kv_tokens}, RAG Tokens: {rag_tokens}",
"chat_feedback": "Document compressed successfully. You can now chat."
})
return state, True
@spaces.GPU
def chat_response_stream(message: str, history: list, state: dict):
# Check if the document is compressed before allowing chat
if not state.get("compression_done", False) or "compressed_cache" not in state:
yield "Document not compressed yet. Please compress the document first to enable chat."
return
user_message = message
save_path = state["compressed_cache"]
past_key_values = FinchCache.load(save_path, device=model.device)
compressed_length = past_key_values.get_seq_length()
collection_name = state["rag_index"]
retrieval_slider_value = state["retrieval_slider"]
percentage = state["global_local"]
rag_retrieval_size = int(retrieval_slider_value * (1.0 - (percentage / 100)))
print("RAG retrieval size: ", rag_retrieval_size)
if percentage == 0:
rag_prefix = prefix
rag_task = state["task_description"]
rag_few_shot = state["few_shot"]
else:
rag_prefix = ""
rag_task = ""
rag_few_shot = ""
print("user message: ", user_message)
if rag_retrieval_size != 0:
print("Running RAG query")
rag_context = run_naive_rag_query(collection_name, user_message, rag_retrieval_size, rag_prefix, rag_task, rag_few_shot)
new_input = rag_context + "\nquestion: " + user_message + suffix + "answer:"
else:
new_input = "\nquestion: " + user_message + suffix + "answer:"
tokenized_new_input = tokenizer(new_input, return_tensors="pt").to(device)
eos_block = torch.full((1, compressed_length), tokenizer.eos_token_id, device=device, dtype=torch.long)
new_input_ids = torch.cat([eos_block, tokenized_new_input["input_ids"]], dim=-1)
new_attention_mask = torch.cat([torch.ones((1, compressed_length), device=device), tokenized_new_input["attention_mask"]], dim=-1)
print("New input is: ", new_input)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=new_input_ids,
attention_mask=new_attention_mask,
past_key_values=past_key_values,
streamer=streamer,
use_cache=True,
max_new_tokens=1024,
num_beams=1,
do_sample=False,
temperature=1.0,
top_p=1.0,
top_k=None,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
full_output = ""
for text in streamer:
full_output += text
time.sleep(0.05)
yield full_output
state["compressed_cache"] = past_key_values
return full_output
def update_token_breakdown(token_count, retrieval_slider_value, global_local_value):
try:
token_count = int(token_count)
slider_val = float(retrieval_slider_value)
percentage = int(global_local_value.replace('%', ''))
retrieval_context_length = int(token_count / slider_val)
rag_tokens = int(retrieval_context_length * (1 - (percentage / 100)))
kv_tokens = retrieval_context_length - rag_tokens
return f"KV Compress Tokens: {kv_tokens}, RAG Tokens: {rag_tokens}"
except Exception as e:
return "Token breakdown unavailable."
##########################################################################
# Gradio Interface
##########################################################################
CSS = """
body {
font-family: "Times New Roman", Times, serif;
}
.upload-section {
padding: 10px;
border: 2px dashed #ccc;
border-radius: 10px;
}
.upload-button {
background: #34c759 !important;
color: white !important;
border-radius: 25px !important;
}
.chatbot-container {
margin-top: 20px;
}
.status-output {
margin-top: 10px;
font-size: 14px;
}
.processing-info {
margin-top: 5px;
font-size: 12px;
color: #666;
}
.info-container {
margin-top: 10px;
padding: 10px;
border-radius: 5px;
}
.file-list {
margin-top: 0;
max-height: 200px;
overflow-y: auto;
padding: 5px;
border: 1px solid #eee;
border-radius: 5px;
}
.stats-box {
margin-top: 10px;
padding: 10px;
border-radius: 5px;
font-size: 12px;
}
.submit-btn {
background: #1a73e8 !important;
color: white !important;
border-radius: 25px !important;
margin-left: 10px;
padding: 5px 10px;
font-size: 16px;
}
.input-row {
display: flex;
align-items: center;
}
@media (min-width: 768px) {
.main-container {
display: flex;
justify-content: space-between;
gap: 20px;
}
.upload-section {
flex: 3;
}
.chatbot-container {
flex: 1;
margin-top: 0;
}
}
"""
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
gr.HTML("<h1><center>Beyond RAG with LLama 3.1-8B-Instruct Model</center></h1>")
gr.HTML("<center><p>Compress your document and chat with it.</p></center>")
hidden_token_count = gr.State(value=0)
compression_done = gr.State(value=False)
compressed_doc_state = gr.State(value={})
with gr.Row(elem_classes="main-container"):
with gr.Column(elem_classes="upload-section"):
gr.Markdown("## Document Preprocessing")
with gr.Row():
file_input = gr.File(label="Drop file here or upload", file_count="multiple", elem_id="file-upload-area")
url_input = gr.Textbox(label="or enter a URL", placeholder="https://example.com/document.pdf")
with gr.Row():
do_ocr = gr.Checkbox(label="Do OCR", value=False)
do_table = gr.Checkbox(label="Include Table Structure", value=False)
with gr.Accordion("Prompt Designer", open=False):
task_description_input = gr.Textbox(label="Task Description", value=default_task_description, lines=3, elem_id="task-description")
few_shot_input = gr.Textbox(label="Few-Shot Examples", value=default_few_shot, lines=10, elem_id="few-shot")
with gr.Accordion("Show Markdown Output", open=False):
markdown_output = gr.Textbox(label="Markdown Output", lines=20)
token_count_text = gr.Markdown("Number of tokens before compression: ")
retrieval_slider = gr.Slider(label="Select Compression Rate", minimum=1, maximum=32, step=1, value=2)
retrieval_info_text = gr.Markdown("Number of tokens after compression: ")
# New widget for token breakdown (KV vs RAG)
tokens_breakdown_text = gr.Markdown("Token breakdown will appear here.")
global_local_slider = gr.Radio(label="Global vs Local (0 is all RAG, 100 is all global)",
choices=["0%", "25%", "50%", "75%", "100%"], value="75%")
compress_button = gr.Button("Compress Document", interactive=False, elem_classes="upload-button")
# New widget for chat status feedback
chat_status_text = gr.Markdown("Document not compressed yet. Please compress the document to enable chat.")
file_input.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
)
url_input.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
)
do_ocr.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
)
do_table.change(
fn=auto_convert,
inputs=[file_input, url_input, do_ocr, do_table],
outputs=[markdown_output, token_count_text, retrieval_slider, retrieval_info_text, hidden_token_count, compress_button, compression_done, compressed_doc_state, chat_status_text]
)
retrieval_slider.change(
fn=update_retrieval_context,
inputs=[hidden_token_count, retrieval_slider],
outputs=retrieval_info_text
)
# Update token breakdown when slider or global/local changes
retrieval_slider.change(
fn=update_token_breakdown,
inputs=[hidden_token_count, retrieval_slider, global_local_slider],
outputs=tokens_breakdown_text
)
global_local_slider.change(
fn=update_token_breakdown,
inputs=[hidden_token_count, retrieval_slider, global_local_slider],
outputs=tokens_breakdown_text
)
compress_button.click(
fn=prepare_compression_and_rag,
inputs=[markdown_output, retrieval_slider, global_local_slider, task_description_input, few_shot_input, compressed_doc_state],
outputs=[compressed_doc_state, compression_done]
).then(
fn=lambda state: gr.update(value="Document compressed successfully. You can now chat."),
outputs=chat_status_text
)
with gr.Column(elem_classes="chatbot-container"):
gr.Markdown("## Chat")
chat_interface = gr.ChatInterface(
fn=chat_response_stream,
additional_inputs=[compressed_doc_state],
type="messages"
)
demo.queue(max_size=16).launch()