Spaces:
Paused
Paused
File size: 11,997 Bytes
c964d4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
from losses import ramps
class consistency_weight(object):
"""
ramp_types = ['sigmoid_rampup', 'linear_rampup', 'cosine_rampup', 'log_rampup', 'exp_rampup']
"""
def __init__(self, final_w, iters_per_epoch, rampup_starts=0, rampup_ends=7, ramp_type='sigmoid_rampup'):
self.final_w = final_w
self.iters_per_epoch = iters_per_epoch
self.rampup_starts = rampup_starts * iters_per_epoch
self.rampup_ends = rampup_ends * iters_per_epoch
self.rampup_length = (self.rampup_ends - self.rampup_starts)
self.rampup_func = getattr(ramps, ramp_type)
self.current_rampup = 0
def __call__(self, epoch, curr_iter):
cur_total_iter = self.iters_per_epoch * epoch + curr_iter
if cur_total_iter < self.rampup_starts:
return 0
self.current_rampup = self.rampup_func(cur_total_iter - self.rampup_starts, self.rampup_length)
return self.final_w * self.current_rampup
def CE_loss(input_logits, target_targets, ignore_index, temperature=1):
return F.cross_entropy(input_logits/temperature, target_targets, ignore_index=ignore_index)
# for FocalLoss
def softmax_helper(x):
# copy from: https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunet/utilities/nd_softmax.py
rpt = [1 for _ in range(len(x.size()))]
rpt[1] = x.size(1)
x_max = x.max(1, keepdim=True)[0].repeat(*rpt)
e_x = torch.exp(x - x_max)
return e_x / e_x.sum(1, keepdim=True).repeat(*rpt)
def get_alpha(supervised_loader):
# get number of classes
num_labels = 0
for image_batch, label_batch in supervised_loader:
label_batch.data[label_batch.data==255] = 0 # pixels of ignore class added to background
l_unique = torch.unique(label_batch.data)
list_unique = [element.item() for element in l_unique.flatten()]
num_labels = max(max(list_unique),num_labels)
num_classes = num_labels + 1
# count class occurrences
alpha = [0 for i in range(num_classes)]
for image_batch, label_batch in supervised_loader:
label_batch.data[label_batch.data==255] = 0 # pixels of ignore class added to background
l_unique = torch.unique(label_batch.data)
list_unique = [element.item() for element in l_unique.flatten()]
l_unique_count = torch.stack([(label_batch.data==x_u).sum() for x_u in l_unique]) # tensor([65920, 36480])
list_count = [count.item() for count in l_unique_count.flatten()]
for index in list_unique:
alpha[index] += list_count[list_unique.index(index)]
return alpha
# for FocalLoss
def softmax_helper(x):
# copy from: https://github.com/MIC-DKFZ/nnUNet/blob/master/nnunet/utilities/nd_softmax.py
rpt = [1 for _ in range(len(x.size()))]
rpt[1] = x.size(1)
x_max = x.max(1, keepdim=True)[0].repeat(*rpt)
e_x = torch.exp(x - x_max)
return e_x / e_x.sum(1, keepdim=True).repeat(*rpt)
class FocalLoss(nn.Module):
"""
copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py
This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
Focal_Loss= -1*alpha*(1-pt)*log(pt)
:param num_class:
:param alpha: (tensor) 3D or 4D the scalar factor for this criterion
:param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
focus on hard misclassified example
:param smooth: (float,double) smooth value when cross entropy
:param balance_index: (int) balance class index, should be specific when alpha is float
:param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
"""
def __init__(self, apply_nonlin=None, ignore_index = None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True):
super(FocalLoss, self).__init__()
self.apply_nonlin = apply_nonlin
self.alpha = alpha
self.gamma = gamma
self.balance_index = balance_index
self.smooth = smooth
self.size_average = size_average
if self.smooth is not None:
if self.smooth < 0 or self.smooth > 1.0:
raise ValueError('smooth value should be in [0,1]')
def forward(self, logit, target):
if self.apply_nonlin is not None:
logit = self.apply_nonlin(logit)
num_class = logit.shape[1]
if logit.dim() > 2:
# N,C,d1,d2 -> N,C,m (m=d1*d2*...)
logit = logit.view(logit.size(0), logit.size(1), -1)
logit = logit.permute(0, 2, 1).contiguous()
logit = logit.view(-1, logit.size(-1))
target = torch.squeeze(target, 1)
target = target.view(-1, 1)
valid_mask = None
if self.ignore_index is not None:
valid_mask = target != self.ignore_index
target = target * valid_mask
alpha = self.alpha
if alpha is None:
alpha = torch.ones(num_class, 1)
elif isinstance(alpha, (list, np.ndarray)):
assert len(alpha) == num_class
alpha = torch.FloatTensor(alpha).view(num_class, 1)
alpha = alpha / alpha.sum()
alpha = 1/alpha # inverse of class frequency
elif isinstance(alpha, float):
alpha = torch.ones(num_class, 1)
alpha = alpha * (1 - self.alpha)
alpha[self.balance_index] = self.alpha
else:
raise TypeError('Not support alpha type')
if alpha.device != logit.device:
alpha = alpha.to(logit.device)
idx = target.cpu().long()
one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_()
# to resolve error in idx in scatter_
idx[idx==225]=0
one_hot_key = one_hot_key.scatter_(1, idx, 1)
if one_hot_key.device != logit.device:
one_hot_key = one_hot_key.to(logit.device)
if self.smooth:
one_hot_key = torch.clamp(
one_hot_key, self.smooth/(num_class-1), 1.0 - self.smooth)
pt = (one_hot_key * logit).sum(1) + self.smooth
logpt = pt.log()
gamma = self.gamma
alpha = alpha[idx]
alpha = torch.squeeze(alpha)
loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt
if valid_mask is not None:
loss = loss * valid_mask.squeeze()
if self.size_average:
loss = loss.mean()
else:
loss = loss.sum()
return loss
class abCE_loss(nn.Module):
"""
Annealed-Bootstrapped cross-entropy loss
"""
def __init__(self, iters_per_epoch, epochs, num_classes, weight=None,
reduction='mean', thresh=0.7, min_kept=1, ramp_type='log_rampup'):
super(abCE_loss, self).__init__()
self.weight = torch.FloatTensor(weight) if weight is not None else weight
self.reduction = reduction
self.thresh = thresh
self.min_kept = min_kept
self.ramp_type = ramp_type
if ramp_type is not None:
self.rampup_func = getattr(ramps, ramp_type)
self.iters_per_epoch = iters_per_epoch
self.num_classes = num_classes
self.start = 1/num_classes
self.end = 0.9
self.total_num_iters = (epochs - (0.6 * epochs)) * iters_per_epoch
def threshold(self, curr_iter, epoch):
cur_total_iter = self.iters_per_epoch * epoch + curr_iter
current_rampup = self.rampup_func(cur_total_iter, self.total_num_iters)
return current_rampup * (self.end - self.start) + self.start
def forward(self, predict, target, ignore_index, curr_iter, epoch):
batch_kept = self.min_kept * target.size(0)
prob_out = F.softmax(predict, dim=1)
tmp_target = target.clone()
tmp_target[tmp_target == ignore_index] = 0
prob = prob_out.gather(1, tmp_target.unsqueeze(1))
mask = target.contiguous().view(-1, ) != ignore_index
sort_prob, sort_indices = prob.contiguous().view(-1, )[mask].contiguous().sort()
if self.ramp_type is not None:
thresh = self.threshold(curr_iter=curr_iter, epoch=epoch)
else:
thresh = self.thresh
min_threshold = sort_prob[min(batch_kept, sort_prob.numel() - 1)] if sort_prob.numel() > 0 else 0.0
threshold = max(min_threshold, thresh)
loss_matrix = F.cross_entropy(predict, target,
weight=self.weight.to(predict.device) if self.weight is not None else None,
ignore_index=ignore_index, reduction='none')
loss_matirx = loss_matrix.contiguous().view(-1, )
sort_loss_matirx = loss_matirx[mask][sort_indices]
select_loss_matrix = sort_loss_matirx[sort_prob < threshold]
if self.reduction == 'sum' or select_loss_matrix.numel() == 0:
return select_loss_matrix.sum()
elif self.reduction == 'mean':
return select_loss_matrix.mean()
else:
raise NotImplementedError('Reduction Error!')
def softmax_mse_loss(inputs, targets, conf_mask=False, threshold=None, use_softmax=False):
assert inputs.requires_grad == True and targets.requires_grad == False
assert inputs.size() == targets.size() # (batch_size * num_classes * H * W)
inputs = F.softmax(inputs, dim=1)
if use_softmax:
targets = F.softmax(targets, dim=1)
if conf_mask:
loss_mat = F.mse_loss(inputs, targets, reduction='none')
mask = (targets.max(1)[0] > threshold)
loss_mat = loss_mat[mask.unsqueeze(1).expand_as(loss_mat)]
if loss_mat.shape.numel() == 0: loss_mat = torch.tensor([0.]).to(inputs.device)
return loss_mat.mean()
else:
return F.mse_loss(inputs, targets, reduction='mean') # take the mean over the batch_size
def softmax_kl_loss(inputs, targets, conf_mask=False, threshold=None, use_softmax=False):
assert inputs.requires_grad == True and targets.requires_grad == False
assert inputs.size() == targets.size()
if use_softmax:
targets = F.softmax(targets, dim=1)
if conf_mask:
loss_mat = F.kl_div(input_log_softmax, targets, reduction='none')
mask = (targets.max(1)[0] > threshold)
loss_mat = loss_mat[mask.unsqueeze(1).expand_as(loss_mat)]
if loss_mat.shape.numel() == 0: loss_mat = torch.tensor([0.]).to(inputs.device)
return loss_mat.sum() / mask.shape.numel()
else:
return F.kl_div(inputs, targets, reduction='mean')
def softmax_js_loss(inputs, targets, **_):
assert inputs.requires_grad == True and targets.requires_grad == False
assert inputs.size() == targets.size()
epsilon = 1e-5
M = (F.softmax(inputs, dim=1) + targets) * 0.5
kl1 = F.kl_div(F.log_softmax(inputs, dim=1), M, reduction='mean')
kl2 = F.kl_div(torch.log(targets+epsilon), M, reduction='mean')
return (kl1 + kl2) * 0.5
def pair_wise_loss(unsup_outputs, size_average=True, nbr_of_pairs=8):
"""
Pair-wise loss in the sup. mat.
"""
if isinstance(unsup_outputs, list):
unsup_outputs = torch.stack(unsup_outputs)
# Only for a subset of the aux outputs to reduce computation and memory
unsup_outputs = unsup_outputs[torch.randperm(unsup_outputs.size(0))]
unsup_outputs = unsup_outputs[:nbr_of_pairs]
temp = torch.zeros_like(unsup_outputs) # For grad purposes
for i, u in enumerate(unsup_outputs):
temp[i] = F.softmax(u, dim=1)
mean_prediction = temp.mean(0).unsqueeze(0) # Mean over the auxiliary outputs
pw_loss = ((temp - mean_prediction)**2).mean(0) # Variance
pw_loss = pw_loss.sum(1) # Sum over classes
if size_average:
return pw_loss.mean()
return pw_loss.sum()
|