import streamlit as st import bruges as b from einops import repeat import numpy as np from bruges.reflection.reflection import zoeppritz_rpp as zrpp import pandas as pd import altair as alt def vs_from_poisson(vp, poisson): '''compute pressure velocity from shear velocity and poissons ratio''' return np.sqrt((vp**2 - 2*poisson*vp**2)/(2 - 2*poisson)) def gardners(vp): '''compute density via gardners relation''' return 1000*0.31*np.power(vp, 0.25)/1.33 def cartesian_product(*arrays): '''return cartesion product of several arrays''' ndim = len(arrays) return (np.stack(np.meshgrid(*arrays), axis=-1) .reshape(-1, ndim)) def loop_zrpp(vp1,vs1,rho1,vp2,vs2,rho2,theta1): '''compute reflectivity for many values of input parameters. "1" denotes layer one, "2" denotes layer two. outside this function, I tend to use 0-indexing though.''' refl_loop = np.empty(len(vp1), dtype=complex) for i in range(vp1.shape[0]): refl_loop[i] = zrpp(vp1=vp1[i], vs1=vs1[i], rho1=rho1[i], vp2=vp2[i], vs2=vs2[i], rho2=rho2[i], theta1=theta1[i]) return refl_loop def wb_ava_fig(vwater=1520., rwater = 1025., poissons=0.49): ''' AVO: Amplitude Versus Offset AVA: Amplitude Versus Angle compute AVA at the WB for a range of values, then plot using altair ''' ### Set up some variables VP1 = np.arange(1530,1820,50) THE = np.arange(0.0, 88., 1.) POI = np.array([poissons]) ### Set variables that depend on those variables params = cartesian_product(VP1, THE, POI) VP1, THE, POI = [a.ravel() for a in np.hsplit(params, 3)] VP0 = np.full(VP1.shape, vwater) # V-RMS for ~200 m water depth VS0 = np.full(VP1.shape, 0.) RH0 = np.full(VP1.shape, rwater) # 1025 kg/m^3 per Inversion of the physical properties of seafloor surface, South China Sea, Zhou et al 2021 VP1 = VP1 VS1 = vs_from_poisson(VP1,POI) RH1 = gardners(VP1) ### Shove into a dict to pass to zrpp params = {"vp1": VP0, "vs1": VS0, "rho1": RH0, "vp2": VP1, "vs2": VS1, "rho2": RH1, "theta1":THE} # Compute zoeppritz equation r = loop_zrpp(**params) # Put the results into a DataFrame df = pd.DataFrame({"Vp sub-WB": VP1, "Poisson_s ratio": POI, "Vs sub-WB": VS1, "Angle": THE, "Amplitude": np.real(r)}) # Select only points pre-critical angle df["Ang_Crit"] = np.degrees(np.arcsin(1500 / df["Vp sub-WB"].values)) df = df[df["Angle"] < df["Ang_Crit"]] # Create the altair figure highlight = alt.selection(type='single', on='mouseover', fields=["Vp sub-WB:Q"], nearest=True) base = alt.Chart(df).encode( x="Angle", y="Amplitude", color="Vp sub-WB:Q", tooltip=["Vp sub-WB", "Vs sub-WB", "Angle", "Amplitude"] ) points = base.mark_circle().encode( opacity=alt.value(0) ).add_selection( highlight ).properties( width=600, height=450 ) lines = base.mark_line().encode( size=alt.condition(~highlight, alt.value(3), alt.value(7)) ) return points + lines vwater = st.slider("Select a value for water velocity", min_value=1495, max_value=1545, value=1520) rwater = st.slider("Select a value for density of water", min_value=1005, max_value=1045, value=1025) poissons = st.slider("Select a value for Poisson's ratio", min_value=0.4, max_value=0.5, value=0.48) # st.write("Poisson's ratio is:", p) st.altair_chart(wb_ava_fig(vwater, rwater, poissons))