Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import sys | |
import subprocess | |
import spaces | |
import torch | |
import gradio as gr | |
from typing import Sequence, Mapping, Any, Union | |
from examples_db import ZEN_EXAMPLES | |
from PIL import Image, ImageChops | |
from huggingface_hub import hf_hub_download | |
# Setup ComfyUI if not already set up | |
# if not os.path.exists("ComfyUI"): | |
# print("Setting up ComfyUI...") | |
# subprocess.run(["bash", "setup_comfyui.sh"], check=True) | |
# Ensure the output directory exists | |
os.makedirs("output", exist_ok=True) | |
# Download models if not already present | |
print("Checking and downloading models...") | |
hf_hub_download( | |
repo_id="black-forest-labs/FLUX.1-Redux-dev", | |
filename="flux1-redux-dev.safetensors", | |
local_dir="models/style_models", | |
) | |
hf_hub_download( | |
repo_id="black-forest-labs/FLUX.1-Depth-dev", | |
filename="flux1-depth-dev.safetensors", | |
local_dir="models/diffusion_models", | |
) | |
hf_hub_download( | |
repo_id="black-forest-labs/FLUX.1-Canny-dev", | |
filename="flux1-canny-dev.safetensors", | |
local_dir="models/controlnet", | |
) | |
hf_hub_download( | |
repo_id="XLabs-AI/flux-controlnet-collections", | |
filename="flux-canny-controlnet-v3.safetensors", | |
local_dir="models/controlnet", | |
) | |
hf_hub_download( | |
repo_id="Comfy-Org/sigclip_vision_384", | |
filename="sigclip_vision_patch14_384.safetensors", | |
local_dir="models/clip_vision", | |
) | |
hf_hub_download( | |
repo_id="Kijai/DepthAnythingV2-safetensors", | |
filename="depth_anything_v2_vitl_fp32.safetensors", | |
local_dir="models/depthanything", | |
) | |
hf_hub_download( | |
repo_id="black-forest-labs/FLUX.1-dev", | |
filename="ae.safetensors", | |
local_dir="models/vae/FLUX1", | |
) | |
hf_hub_download( | |
repo_id="comfyanonymous/flux_text_encoders", | |
filename="clip_l.safetensors", | |
local_dir="models/text_encoders", | |
) | |
t5_path = hf_hub_download( | |
repo_id="comfyanonymous/flux_text_encoders", | |
filename="t5xxl_fp16.safetensors", | |
local_dir="models/text_encoders/t5", | |
) | |
# Import required functions and setup ComfyUI path | |
import folder_paths | |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
try: | |
return obj[index] | |
except KeyError: | |
return obj["result"][index] | |
def find_path(name: str, path: str = None) -> str: | |
if path is None: | |
path = os.getcwd() | |
if name in os.listdir(path): | |
path_name = os.path.join(path, name) | |
print(f"{name} found: {path_name}") | |
return path_name | |
parent_directory = os.path.dirname(path) | |
if parent_directory == path: | |
return None | |
return find_path(name, parent_directory) | |
def add_comfyui_directory_to_sys_path() -> None: | |
comfyui_path = find_path("ComfyUI") | |
if comfyui_path is not None and os.path.isdir(comfyui_path): | |
sys.path.append(comfyui_path) | |
print(f"'{comfyui_path}' added to sys.path") | |
def add_extra_model_paths() -> None: | |
try: | |
from main import load_extra_path_config | |
except ImportError: | |
from utils.extra_config import load_extra_path_config | |
extra_model_paths = find_path("extra_model_paths.yaml") | |
if extra_model_paths is not None: | |
load_extra_path_config(extra_model_paths) | |
else: | |
print("Could not find the extra_model_paths config file.") | |
# Initialize paths | |
add_comfyui_directory_to_sys_path() | |
add_extra_model_paths() | |
def import_custom_nodes() -> None: | |
import asyncio | |
import execution | |
from nodes import init_extra_nodes | |
import server | |
# Create a new event loop if running in a new thread | |
try: | |
loop = asyncio.get_event_loop() | |
except RuntimeError: | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server_instance) | |
init_extra_nodes() | |
# Import all necessary nodes | |
print("Importing ComfyUI nodes...") | |
try: | |
from nodes import ( | |
StyleModelLoader, | |
VAEEncode, | |
NODE_CLASS_MAPPINGS, | |
LoadImage, | |
CLIPVisionLoader, | |
SaveImage, | |
VAELoader, | |
CLIPVisionEncode, | |
DualCLIPLoader, | |
EmptyLatentImage, | |
VAEDecode, | |
UNETLoader, | |
CLIPTextEncode, | |
) | |
# Initialize all constant nodes and models in global context | |
import_custom_nodes() | |
except Exception as e: | |
print(f"Error importing ComfyUI nodes: {e}") | |
raise | |
print("Setting up models...") | |
# Global variables for preloaded models and constants | |
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() | |
CONST_1024 = intconstant.get_value(value=1024) | |
# Load CLIP | |
dualcliploader = DualCLIPLoader() | |
CLIP_MODEL = dualcliploader.load_clip( | |
clip_name1="t5/t5xxl_fp16.safetensors", | |
clip_name2="clip_l.safetensors", | |
type="flux", | |
) | |
# Load VAE | |
vaeloader = VAELoader() | |
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors") | |
# Load UNET | |
unetloader = UNETLoader() | |
UNET_MODEL = unetloader.load_unet( | |
unet_name="flux1-depth-dev.safetensors", weight_dtype="default" | |
) | |
# Load CLIP Vision | |
clipvisionloader = CLIPVisionLoader() | |
CLIP_VISION_MODEL = clipvisionloader.load_clip( | |
clip_name="sigclip_vision_patch14_384.safetensors" | |
) | |
# Load Style Model | |
stylemodelloader = StyleModelLoader() | |
STYLE_MODEL = stylemodelloader.load_style_model( | |
style_model_name="flux1-redux-dev.safetensors" | |
) | |
# Initialize samplers | |
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler") | |
# Initialize depth model | |
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]() | |
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[ | |
"DownloadAndLoadDepthAnythingV2Model" | |
]() | |
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel( | |
model="depth_anything_v2_vitl_fp32.safetensors" | |
) | |
controlnetloader = NODE_CLASS_MAPPINGS["ControlNetLoader"]() | |
CANNY_XLABS_MODEL = controlnetloader.load_controlnet( | |
control_net_name="flux-canny-controlnet-v3.safetensors" | |
) | |
# Initialize nodes | |
cliptextencode = CLIPTextEncode() | |
loadimage = LoadImage() | |
vaeencode = VAEEncode() | |
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
controlNetApplyAdvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]() | |
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]() | |
clipvisionencode = CLIPVisionEncode() | |
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]() | |
emptylatentimage = EmptyLatentImage() | |
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() | |
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
vaedecode = VAEDecode() | |
cr_text = NODE_CLASS_MAPPINGS["CR Text"]() | |
saveimage = SaveImage() | |
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]() | |
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]() | |
canny_prossessor = NODE_CLASS_MAPPINGS["Canny"]() | |
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() | |
from comfy import model_management | |
model_loaders = [CLIP_MODEL, VAE_MODEL, UNET_MODEL, CLIP_VISION_MODEL] | |
print("Loading models to GPU...") | |
model_management.load_models_gpu( | |
[ | |
loader[0].patcher if hasattr(loader[0], "patcher") else loader[0] | |
for loader in model_loaders | |
] | |
) | |
print("Setup complete!") | |
def generate_image( | |
prompt, | |
structure_image, | |
style_image, | |
depth_strength=15, | |
canny_strength=30, | |
style_strength=0.5, | |
steps=28, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
"""Main generation function that processes inputs and returns the path to the generated image.""" | |
timestamp = random.randint(10000, 99999) | |
output_filename = f"flux_zen_{timestamp}.png" | |
with torch.inference_mode(): | |
# Set up CLIP | |
clip_switch = cr_clip_input_switch.switch( | |
Input=1, | |
clip1=get_value_at_index(CLIP_MODEL, 0), | |
clip2=get_value_at_index(CLIP_MODEL, 0), | |
) | |
# Encode text | |
text_encoded = cliptextencode.encode( | |
text=prompt, | |
clip=get_value_at_index(clip_switch, 0), | |
) | |
empty_text = cliptextencode.encode( | |
text="", | |
clip=get_value_at_index(clip_switch, 0), | |
) | |
# Process structure image | |
structure_img = loadimage.load_image(image=structure_image) | |
# Resize image | |
resized_img = imageresize.execute( | |
width=get_value_at_index(CONST_1024, 0), | |
height=get_value_at_index(CONST_1024, 0), | |
interpolation="bicubic", | |
method="keep proportion", | |
condition="always", | |
multiple_of=16, | |
image=get_value_at_index(structure_img, 0), | |
) | |
# Get image size | |
size_info = getimagesizeandcount.getsize( | |
image=get_value_at_index(resized_img, 0) | |
) | |
# Encode VAE | |
vae_encoded = vaeencode.encode( | |
pixels=get_value_at_index(size_info, 0), | |
vae=get_value_at_index(VAE_MODEL, 0), | |
) | |
# Process canny | |
canny_processed = canny_prossessor.detect_edge( | |
image=get_value_at_index(size_info, 0), | |
low_threshold=0.4, | |
high_threshold=0.8, | |
) | |
# Apply canny Advanced | |
canny_conditions = controlNetApplyAdvanced.apply_controlnet( | |
positive=get_value_at_index(text_encoded, 0), | |
negative=get_value_at_index(empty_text, 0), | |
control_net=get_value_at_index(CANNY_XLABS_MODEL, 0), | |
image=get_value_at_index(canny_processed, 0), | |
strength=canny_strength, | |
start_percent=0.0, | |
end_percent=0.5, | |
vae=get_value_at_index(VAE_MODEL, 0), | |
) | |
# Process depth | |
depth_processed = depthanything_v2.process( | |
da_model=get_value_at_index(DEPTH_MODEL, 0), | |
images=get_value_at_index(size_info, 0), | |
) | |
# Apply Flux guidance | |
flux_guided = fluxguidance.append( | |
guidance=depth_strength, | |
conditioning=get_value_at_index(canny_conditions, 0), | |
) | |
# Process style image | |
style_img = loadimage.load_image(image=style_image) | |
# Encode style with CLIP Vision | |
style_encoded = clipvisionencode.encode( | |
crop="center", | |
clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0), | |
image=get_value_at_index(style_img, 0), | |
) | |
# Set up conditioning | |
conditioning = instructpixtopixconditioning.encode( | |
positive=get_value_at_index(flux_guided, 0), | |
negative=get_value_at_index(canny_conditions, 1), | |
vae=get_value_at_index(VAE_MODEL, 0), | |
pixels=get_value_at_index(depth_processed, 0), | |
) | |
# Apply style | |
style_applied = stylemodelapplyadvanced.apply_stylemodel( | |
strength=style_strength, | |
conditioning=get_value_at_index(conditioning, 0), | |
style_model=get_value_at_index(STYLE_MODEL, 0), | |
clip_vision_output=get_value_at_index(style_encoded, 0), | |
) | |
# Set up empty latent | |
empty_latent = emptylatentimage.generate( | |
width=get_value_at_index(resized_img, 1), | |
height=get_value_at_index(resized_img, 2), | |
batch_size=1, | |
) | |
# Set up guidance | |
guided = basicguider.get_guider( | |
model=get_value_at_index(UNET_MODEL, 0), | |
conditioning=get_value_at_index(style_applied, 0), | |
) | |
# Set up scheduler | |
schedule = basicscheduler.get_sigmas( | |
scheduler="simple", | |
steps=steps, | |
denoise=1, | |
model=get_value_at_index(UNET_MODEL, 0), | |
) | |
# Generate random noise | |
noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64)) | |
# Sample | |
sampled = samplercustomadvanced.sample( | |
noise=get_value_at_index(noise, 0), | |
guider=get_value_at_index(guided, 0), | |
sampler=get_value_at_index(SAMPLER, 0), | |
sigmas=get_value_at_index(schedule, 0), | |
latent_image=get_value_at_index(empty_latent, 0), | |
) | |
# Decode VAE | |
decoded = vaedecode.decode( | |
samples=get_value_at_index(sampled, 0), | |
vae=get_value_at_index(VAE_MODEL, 0), | |
) | |
# Create text node for prefix | |
prefix = cr_text.text_multiline(text=f"flux_zen_{timestamp}") | |
# Use SaveImage node to save the image | |
saved_data = saveimage.save_images( | |
filename_prefix=get_value_at_index(prefix, 0), | |
images=get_value_at_index(decoded, 0), | |
) | |
try: | |
saved_path = f"output/{saved_data['ui']['images'][0]['filename']}" | |
return saved_path | |
except Exception as e: | |
print(f"Error getting saved image path: {e}") | |
# Fall back to the expected path | |
return os.path.join("output", output_filename) | |
css = """ | |
footer { | |
visibility: hidden; | |
} | |
.title { | |
font-size: 2.5em; | |
background: linear-gradient(109deg, rgba(34,193,195,1) 0%, rgba(67,253,45,1) 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
font-weight: bold; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
""" | |
<h1><center>🎨 FLUX <span class="title">Zen Style</span> Depth+Canny</center></h1> | |
""" | |
) | |
gr.Markdown( | |
"Flux[dev] Redux + Flux[dev] Depth and XLabs Canny based on the space FLUX Style Shaping" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt_input = gr.Textbox( | |
label="Prompt", | |
placeholder="Enter your prompt here...", | |
info="Describe the image you want to generate", | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
structure_image = gr.Image( | |
image_mode="RGB", label="Structure Image", type="filepath" | |
) | |
depth_strength = gr.Slider( | |
minimum=0, | |
maximum=50, | |
value=15, | |
label="Depth Strength", | |
info="Controls how much the depth map influences the result", | |
) | |
canny_strength = gr.Slider( | |
minimum=0, | |
maximum=1.0, | |
value=0.30, | |
label="Canny Strength", | |
info="Controls how much the edge detection influences the result", | |
) | |
steps = gr.Slider( | |
minimum=10, | |
maximum=50, | |
value=28, | |
label="Steps", | |
info="More steps = better quality but slower generation", | |
) | |
with gr.Column(scale=1): | |
style_image = gr.Image(label="Style Image", type="filepath") | |
style_strength = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.5, | |
label="Style Strength", | |
info="Controls how much the style image influences the result", | |
) | |
with gr.Row(): | |
generate_btn = gr.Button("Generate", value=True, variant="primary") | |
with gr.Column(scale=1): | |
output_image = gr.Image(label="Generated Image") | |
gr.Examples( | |
examples=ZEN_EXAMPLES, | |
inputs=[ | |
prompt_input, | |
structure_image, | |
style_image, | |
output_image, | |
depth_strength, | |
canny_strength, | |
style_strength, | |
steps, | |
], | |
fn=generate_image, | |
label="Presets", | |
examples_per_page=6, | |
) | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[ | |
prompt_input, | |
structure_image, | |
style_image, | |
depth_strength, | |
canny_strength, | |
style_strength, | |
steps, | |
], | |
outputs=[output_image], | |
) | |
gr.Markdown( | |
""" | |
## How to use | |
1. Enter a prompt describing the image you want to generate | |
2. Upload a structure image to provide the basic shape/composition | |
3. Upload a style image to influence the visual style | |
4. Adjust the sliders to control the effect strength | |
5. Click "Generate" to create your image | |
## About | |
This demo uses FLUX.1-Redux-dev for style transfer, FLUX.1-Depth-dev for depth-guided generation, | |
and XLabs Canny for edge detection and structure preservation. | |
""" | |
) | |
if __name__ == "__main__": | |
# Create an examples directory if it doesn't exist , for now it is empty | |
os.makedirs("examples", exist_ok=True) | |
# Launch the app | |
demo.launch(share=True) | |