Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -157,7 +157,7 @@ import gradio as gr
|
|
157 |
import numpy as np
|
158 |
from PIL import Image
|
159 |
|
160 |
-
from accelerate import Accelerator
|
161 |
|
162 |
#import diffusers
|
163 |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
|
@@ -177,7 +177,7 @@ os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
|
177 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
178 |
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
179 |
|
180 |
-
accelerator = Accelerator(mixed_precision="bf16") # Example
|
181 |
|
182 |
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
183 |
|
@@ -203,9 +203,9 @@ def load_and_prepare_model():
|
|
203 |
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
|
204 |
pipe.watermark=None
|
205 |
pipe.safety_checker=None
|
206 |
-
|
207 |
-
pipe.to(torch.bfloat16)
|
208 |
-
pipe.to(accelerator.device)
|
209 |
return pipe
|
210 |
|
211 |
#hidet.option.parallel_build(False)
|
@@ -273,8 +273,7 @@ def generate_30(
|
|
273 |
filename = uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
274 |
upload_to_ftp(filename)
|
275 |
batch_options = options.copy()
|
276 |
-
|
277 |
-
rv_image = pipe(**batch_options).images[0]
|
278 |
sd_image_path = f"rv_C_{timestamp}.png"
|
279 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
280 |
upload_to_ftp(sd_image_path)
|
|
|
157 |
import numpy as np
|
158 |
from PIL import Image
|
159 |
|
160 |
+
#from accelerate import Accelerator
|
161 |
|
162 |
#import diffusers
|
163 |
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
|
|
|
177 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
178 |
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
179 |
|
180 |
+
#accelerator = Accelerator(mixed_precision="bf16") # Example
|
181 |
|
182 |
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
183 |
|
|
|
203 |
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
|
204 |
pipe.watermark=None
|
205 |
pipe.safety_checker=None
|
206 |
+
pipe.to(torch.device('cuda:0'), torch.bfloat16)
|
207 |
+
#pipe.to(torch.bfloat16)
|
208 |
+
#pipe.to(accelerator.device)
|
209 |
return pipe
|
210 |
|
211 |
#hidet.option.parallel_build(False)
|
|
|
273 |
filename = uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
274 |
upload_to_ftp(filename)
|
275 |
batch_options = options.copy()
|
276 |
+
rv_image = pipe(**batch_options).images[0]
|
|
|
277 |
sd_image_path = f"rv_C_{timestamp}.png"
|
278 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
279 |
upload_to_ftp(sd_image_path)
|