dlaj's picture
Deploy from GitHub
8cc5633
# create_dataloaders.py
import logging
from momentfm.utils.utils import control_randomness
from torch.utils.data import DataLoader
from transformer_model.scripts.config_transformer import (BATCH_SIZE,
FORECAST_HORIZON)
from transformer_model.scripts.utils.informer_dataset_class import \
InformerDataset
def create_dataloaders():
logging.info("Setting random seeds...")
control_randomness(seed=13)
logging.info("Loading training dataset...")
train_dataset = InformerDataset(
data_split="train", random_seed=13, forecast_horizon=FORECAST_HORIZON
)
logging.info(
"Train set loaded — Samples: %d | Features: %d",
len(train_dataset),
train_dataset.n_channels,
)
logging.info("Loading test dataset...")
test_dataset = InformerDataset(
data_split="test", random_seed=13, forecast_horizon=FORECAST_HORIZON
)
logging.info(
"Test set loaded — Samples: %d | Features: %d",
len(test_dataset),
test_dataset.n_channels,
)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)
logging.info("Dataloaders created successfully.")
return train_loader, test_loader
if __name__ == "__main__":
create_dataloaders()