|
import gradio as gr |
|
import subprocess |
|
import os |
|
|
|
def run_training_and_return_zip(): |
|
|
|
result = subprocess.run(["python", "train.py"], capture_output=True, text=True) |
|
|
|
zip_path = "/home/user/app/model.zip" |
|
if os.path.exists(zip_path): |
|
logs = result.stdout + "\n" + result.stderr + "\n✅ Training complete. Download your model below." |
|
return logs, zip_path |
|
else: |
|
logs = result.stdout + "\n" + result.stderr + "\n❌ model.zip not found. Check logs for issues." |
|
return logs, None |
|
|
|
gr.Interface( |
|
fn=run_training_and_return_zip, |
|
inputs=[], |
|
outputs=["text", "file"], |
|
title="LLaMA LoRA Fine-Tuning", |
|
description="Click the button to fine-tune. After training, download the zipped model directly." |
|
).launch() |
|
|