darrenphodgson76's picture
Update app.py
2ae2c93 verified
raw
history blame
4.25 kB
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, HfApiModel, DuckDuckGoSearchTool, tool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Tool Definitions ---
@tool
def summarize_query(query: str) -> str:
"""
Provides a structured summary to reframe a query if search results are unclear or poor.
Args:
query (str): The search query that needs summarization.
Returns:
str: A concise summary of key facts about the given query.
"""
return f"Summarize and reframe: {query}"
search_tool = DuckDuckGoSearchTool()
# --- ReACT + Scratchpad + Retry Prompt ---
system_prompt = """
You are a ReACT agent with scratchpad memory and a retry mechanism.
1. Thought: Figure out what's needed.
2. Action: (Optional) Call a tool with a precise query.
3. Observation: Record tool output.
If the first Observation is empty/irrelevant:
4. Thought: Unclear result, reframe and retry.
5. Action: summarize_query(original query).
6. Action: DuckDuckGoSearchTool(reframed query).
7. Observation: Record new result.
Then:
8. Thought: Reflect using all observations.
9. FINAL ANSWER: Provide your answer.
Formatting:
- Start with FINAL ANSWER: [your answer]
- Numbers plain (no commas unless list)
- Strings no articles unless part of proper names
- Lists comma-separated, no extra punctuation
"""
# --- Build the Smart Agent ---
smart_agent = CodeAgent(
tools=[search_tool, summarize_query],
model=HfApiModel(), # no prompt here
system_prompt=system_prompt # prompt passed to CodeAgent
)
# --- Hook into Gradio App ---
class BasicAgent:
def __init__(self):
print("SmolAgent (ReACT + Scratchpad + Retry) initialized.")
def __call__(self, question: str) -> str:
print(f"Q: {question[:50]}...")
return smart_agent.run(question)
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if not profile:
return "Please log in with Hugging Face.", None
username = profile.username
agent = BasicAgent()
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# 1. Fetch questions
try:
resp = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
resp.raise_for_status()
questions = resp.json()
if not questions:
return "No questions fetched.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# 2. Run agent
logs, payload = [], []
for item in questions:
tid = item.get("task_id")
q = item.get("question")
if not tid or q is None:
continue
try:
ans = agent(q)
except Exception as e:
ans = f"AGENT ERROR: {e}"
logs.append({"Task ID": tid, "Question": q, "Submitted Answer": ans})
payload.append({"task_id": tid, "submitted_answer": ans})
if not payload:
return "Agent did not produce any answers.", pd.DataFrame(logs)
# 3. Submit
sub = {"username": username, "agent_code": agent_code, "answers": payload}
try:
post = requests.post(f"{DEFAULT_API_URL}/submit", json=sub, timeout=60)
post.raise_for_status()
res = post.json()
status = (
f"Submission Successful!\n"
f"User: {res.get('username')}\n"
f"Score: {res.get('score', 'N/A')}% "
f"({res.get('correct_count', '?')}/"
f"{res.get('total_attempted', '?')})"
)
return status, pd.DataFrame(logs)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(logs)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# SmolAgent GAIA Evaluation Runner 🚀")
gr.Markdown("1) Clone this space 2) Log in 3) Run Evaluation & Submit All Answers")
gr.LoginButton()
btn = gr.Button("Run Evaluation & Submit All Answers")
out_status = gr.Textbox(label="Run Status", lines=5, interactive=False)
out_table = gr.DataFrame(label="Results")
btn.click(fn=run_and_submit_all, outputs=[out_status, out_table])
if __name__ == "__main__":
demo.launch(debug=True, share=False)