File size: 5,725 Bytes
0412d41
edc547a
1856408
f1dea33
0412d41
 
65adf02
1856408
0412d41
aee5bda
 
0af627b
1856408
aee5bda
 
1856408
aee5bda
65adf02
1856408
65adf02
aee5bda
 
 
 
 
 
edc547a
aee5bda
 
edc547a
aee5bda
edc547a
aee5bda
 
 
edc547a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aee5bda
65adf02
aee5bda
 
1856408
edc547a
 
 
aee5bda
edc547a
 
 
 
 
 
 
 
aee5bda
1856408
 
aee5bda
1856408
 
 
 
aee5bda
 
65adf02
 
 
 
 
 
 
 
 
 
 
 
 
 
edc547a
1856408
edc547a
65adf02
 
edc547a
 
1856408
edc547a
 
65adf02
0412d41
 
 
edc547a
0412d41
 
aee5bda
edc547a
63d6133
edc547a
63d6133
 
0412d41
65adf02
aee5bda
0412d41
2ae2c93
edc547a
65adf02
 
 
aee5bda
0412d41
1856408
0412d41
65adf02
a058371
aee5bda
0412d41
 
 
1856408
aee5bda
a058371
 
aee5bda
edc547a
0412d41
63d6133
aee5bda
a058371
 
 
aee5bda
 
1856408
aee5bda
0412d41
aee5bda
2ae2c93
 
a058371
aee5bda
 
 
 
edc547a
0412d41
a058371
0412d41
a058371
0412d41
1856408
 
0412d41
edc547a
 
 
 
 
 
 
 
0412d41
1856408
63d6133
aee5bda
63d6133
 
0412d41
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import openai
from openai import OpenAI
import gradio as gr
import requests
import pandas as pd

from smolagents import CodeAgent, DuckDuckGoSearchTool, tool

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Configure OpenAI SDK & Client ---
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
    raise RuntimeError("Please set OPENAI_API_KEY in your Space secrets or env!")
openai.api_key = openai_api_key
client = OpenAI()

OPENAI_MODEL_ID = os.getenv("OPENAI_MODEL_ID", "gpt-4.1")

# --- Tool Definitions ---

@tool
def summarize_query(query: str) -> str:
    """
    Reframes an unclear query into a better one.

    Args:
        query (str): The search query to refine.
    Returns:
        str: A concise, improved query.
    """
    return f"Summarize and reframe: {query}"

@tool
def wikipedia_search(page: str) -> str:
    """
    Fetches the summary extract of an English Wikipedia page.

    Args:
        page (str): The page title (e.g. 'Mercedes_Sosa_discography').
    Returns:
        str: The extract section text.
    """
    url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{page}"
    resp = requests.get(url, timeout=10)
    resp.raise_for_status()
    return resp.json().get("extract", "")

search_tool    = DuckDuckGoSearchTool()
wiki_tool      = wikipedia_search
summarize_tool = summarize_query

# --- ReACT + Scratchpad + Auto-Retry Instruction Prompt ---

instruction_prompt = """
You are a ReACT agent with three tools:
 • DuckDuckGoSearchTool(query: str)
 • wikipedia_search(page: str)
 • summarize_query(query: str)

Internally, for each question:
1. Thought: decide which tool to call.
2. Action: call the chosen tool.
3. Observation: record the result.
4. If empty/irrelevant:
   Thought: retry with summarize_query + DuckDuckGoSearchTool.
   Record new Observation.
5. Thought: integrate observations.

Finally, output exactly one line:
FINAL ANSWER: [your concise answer]

Rules:
- Numbers: digits only.
- Lists: comma-separated, no extra punctuation.
- Strings: no filler words.
"""

# --- Model wrapper to satisfy CodeAgent's expected interface ---

class OpenAIModelWrapper:
    def __init__(self, model_id: str, client: OpenAI):
        self.model_id = model_id
        self.client = client

    def __call__(self, prompt: str, **kwargs) -> str:
        # ignore kwargs like stop_sequences, temperature, etc.
        resp = self.client.responses.create(
            model=self.model_id,
            input=prompt
        )
        return resp.output_text

llm_wrapper = OpenAIModelWrapper(model_id=OPENAI_MODEL_ID, client=client)

# --- Build the CodeAgent ---

smart_agent = CodeAgent(
    tools=[search_tool, wiki_tool, summarize_tool],
    model=llm_wrapper
)

# --- BasicAgent wrapper for Gradio ---

class BasicAgent:
    def __init__(self):
        print("SmolAgent (GPT-4.1) with ReACT & tools initialized.")

    def __call__(self, question: str) -> str:
        prompt = instruction_prompt.strip() + "\n\nQUESTION: " + question.strip()
        print(f"Agent prompt: {prompt[:120]}…")
        try:
            return smart_agent.run(prompt)
        except Exception as e:
            return f"AGENT ERROR: {e}"

# --- Gradio / Submission Logic ---

def run_and_submit_all(profile: gr.OAuthProfile | None):
    if not profile:
        return "Please log in to Hugging Face.", None
    username   = profile.username
    space_id   = os.getenv("SPACE_ID", "")
    agent      = BasicAgent()
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    # 1. Fetch questions
    try:
        resp      = requests.get(f"{DEFAULT_API_URL}/questions", timeout=15)
        resp.raise_for_status()
        questions = resp.json() or []
    except Exception as e:
        return f"Error fetching questions: {e}", None

    # 2. Run agent on each question
    logs, payload = [], []
    for item in questions:
        tid = item.get("task_id")
        q   = item.get("question")
        if not tid or not q:
            continue
        ans = agent(q)
        logs.append({"Task ID": tid, "Question": q, "Submitted Answer": ans})
        payload.append({"task_id": tid, "submitted_answer": ans})

    if not payload:
        return "Agent did not produce any answers.", pd.DataFrame(logs)

    # 3. Submit answers
    submission = {"username": username, "agent_code": agent_code, "answers": payload}
    try:
        post = requests.post(f"{DEFAULT_API_URL}/submit", json=submission, timeout=60)
        post.raise_for_status()
        res = post.json()
        status = (
            f"Submission Successful!\n"
            f"User: {res.get('username')}\n"
            f"Overall Score: {res.get('score', 'N/A')}% "
            f"({res.get('correct_count', '?')}/{res.get('total_attempted', '?')})\n"
            f"Message: {res.get('message','')}"
        )
        return status, pd.DataFrame(logs)
    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(logs)

# --- Gradio Interface ---

with gr.Blocks() as demo:
    gr.Markdown("# SmolAgent GAIA Runner 🚀")
    gr.Markdown("""
**Instructions:**
1. Clone this space.
2. Add `OPENAI_API_KEY` (and optionally `OPENAI_MODEL_ID`) in Settings → Secrets.
3. Log in to Hugging Face.
4. Click **Run Evaluation & Submit All Answers**.
""")
    gr.LoginButton()
    run_btn    = gr.Button("Run Evaluation & Submit All Answers")
    status_out = gr.Textbox(label="Status", lines=5, interactive=False)
    table_out  = gr.DataFrame(label="Questions & Answers", wrap=True)

    run_btn.click(fn=run_and_submit_all, outputs=[status_out, table_out])

if __name__ == "__main__":
    demo.launch(debug=True, share=False)