import gradio as gr import torch from PIL import Image # Load the trained YOLO model (or any other model you're using) model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # Replace with your model # Define a prediction function def predict(image): results = model(image) return results.render()[0] # Returns the annotated image # Create a Gradio interface iface = gr.Interface(fn=predict, inputs=gr.Image(), outputs=gr.Image()) # Launch the interface iface.launch()